Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Loris Magnani

Blurred image of the arch used as background for stylistic purposes.
Professor of Astronomy
Research Interests:

The interstellar medium of the Galaxy is the great reservoir from which stars are born and to which they return much of their mass. Composed primarily of hydrogen and helium, the interstellar medium can take many forms depending on the temperature, density, and radiation field. Under certain conditions, the majority of the hydrogen will be in molecular form. The resulting aggregations of molecular gas can come in 2 basic types: large entities which can encompass up to a million solar masses and extend up to 50 parsecs, or distinctly smaller objects with masses less than a thousand solar masses and sizes on the order of a few parsecs. The smaller clouds can be subdivided into 3 basic kinds of objects: diffuse, translucent, and dark clouds, depending on their opacity to ultraviolet radiation and to certain considerations involving their astrochemistry.

My past work has primarily focused on translucent molecular clouds. These objects can be studied both by optical and radio techniques. Their chemistry is simpler than that of the dark molecular clouds but, unlike the diffuse clouds, chemical species more complex than diatomics can be found (such as H2CO, C3H2, etc.). Although translucent clouds are distributed throughout the Galactic plane, they are most easily seen at high Galactic latitudes, away from the background confusion caused by dark clouds and giant molecular clouds along the Galactic plane. The overwhelming majority of the so-called high-latitude molecular clouds turn out to be translucent clouds. In the last decade, my research has focussed on three principal areas: 1) The large-scale distribution of molecular gas at high Galactic latitudes. 2) Quantifying the turbulence characteristics of small molecular clouds. 3) Estimating the amount of dark molecular gas in diffuse and translucent molecular clouds.

I am currently studying the diffuse molecular component of the ISM (i.e., the atomic/molecular interface in small interstellar clouds) using the CH 3335 MHz emission line, the OH 1665 and 1667 MHz emission lines, and the  H2CO 4830 MHz absorption lines.  In particular, I am currrently studying the ability of the OH molecular transition at 1667 MHz to trace diffuse molecular gas with one of my graduate students, Thomas Carroll.  Another of my graduate students, Brett Meerdink, is working on tracing dark molecular gas in the cloud MBM 40.  


List of Former Graduate Students Receiving Degrees:

John Geremia, MS, 1994.  Master’s Thesis title:  “The Excitation Temperature of CH in Diffuse Molecular Clouds.”

Sharon Holcomb, MS, 1997, Master’s Thesis title:  “A Survey of High-Latitude Molecular Clouds in the Southern Galactic Hemisphere.”

Thomas Hearty, Ph.D., 1997, Dissertation title:  “Star Formation at High Galactic Latitude.”

Raymond Chastain, Ph.D., 2005, Dissertation title:  “A Study of Three Molecular Structures at High Galactic Latitude.”

Elizabeth Wennerstrom, MS, 2007,  Master’s Thesis title: “A Survey of Hydroxyl in Three Translucent Molecular Clouds.”

Adam Schneider, MS, 2008,  Master’s Thesis title: “A Search for Young Stellar Objects in MBM 12.”

Marcus Alexander, MS, 2008,  Master’s Thesis title: “Gaussian Deconvolution of  21 cm HI Spectra.”

Samantha Blair,  Ph.D., 2008, Dissertation title:  “A Search for Prebiotic Organic Molecules in the Outer Galaxy.”

David Cotten,  Ph.D., 2011, Dissertation title: “Diffuse Molecular Gas in Cloud Envelopes and the Galaxy.”

Allison J. Smith,  MS, 2013, Master’s Thesis title: “Intermediate Velocity Molecular Clouds at High Galactic Latitude.”

Allison J. Smith, Ph.D., 2018, Dissertation title: “Spectroscopic and Spectropolarimetric Observations of the Diffuse Interstellar Medium."

Amanda Stricklan,  MS, 2019, Master’s Thesis title: “Isolated Molecular Clumps at the CO-Boundary of a Diffuse Molecular Cloud.”

Emmanuel Donate, Ph.D., 2019, Dissertation title: “Dark Gas, the gas of the gaps in the cold ISM."

Erin Marie Dailey, Ph.D., 2021, Dissertation title: "Methylidyne in the Interstellar Medium."

Selected Publications:

"OH 18 cm Observations of the Intermediate Velocity Molecular Cloud G211+63," A.J. Smith, L. Magnani, L. Gonzales, and T. Robishaw, Mon. Not. R. Ast. Soc., 480, 3503 (2018).

“Dark Molecular Gas in Pegasus-Pisces,” E. Donate, S. Blair, Z. Chilton, C. Gladney, J.W. Gordon, M.C. Goulart, and L. Magnani, Mon. Not. R. Ast. Soc., 486, 2281 (2019).

 “OH and CO as Tracers of Molecular Gas in MBM 53,” E. Donate, J. White, and L. Magnani, Mon. Not. R. Ast. Soc., 486, 4414 (2019).

"The excitation temperature of the CH 3335-MHz line," E.M. Dailey, A.J. Smith, L. Magnani, B.-G. Andersson, and W.T. Reach, Mon. Not. R. Ast. Soc., 495, 510 (2020).

"The Future of the Arecibo Observatory: The Next Generation Arecibo Telescope," A.D. Roshi, L. Magnani, and 72 more authors, 2021arXiv210301367A (2021).

"The mixing of dust and gas in the high latitude translucent cloud MBM 40," M. Monaci, L. Magnani, and S.N. Shore, Astronomy & Astrophysics, 668, L9 (2022).

Your gift helps to fund research, travel, and field experience for students and faculty.

Click Here to Learn More About Giving