Thermal transport through a mesoscopic weak link

Kelly R. Patton and Michael R. Geller
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451
(Received 4 January 2001; revised manuscript received 24 May 2001; published 25 September 2001)

We calculate the rate of thermal energy flow between two macroscopic bodies, each in thermodynamic equilibrium at a different temperature, and joined by a weak mechanical link. The macroscopic solids are assumed to be electrically insulating, so that thermal energy is carried only by phonons. To leading order in the strength of the weak link, modeled here by a harmonic spring, the thermal current is determined by a product of the local vibrational density-of-states of the two bodies at the points of connection. Our general expression for the thermal current can be regarded as a thermal analog of the well-known formula for the electrical current through a tunneling barrier. It is also equivalent to the thermal Landauer formula in the weak-tunneling limit. Implications for heat transport experiments on dielectric quantum point contacts are discussed.

DOI: 10.1103/PhysRevB.64.155320 PACS number(s): 68.65.-k, 63.22.+m, 66.70.+f

I. INTRODUCTION

Mesoscopic phonon systems are relatively unexplored compared with their electronic counterparts. An exception is the recent work on thermal conductance quantization in freely suspended one-dimensional dielectric wires, where the thermal conductance was found to be \(\pi k_B^2 T / 6 \hbar \) per transmitted vibrational mode.\(^1\)\(^2\) This behavior parallels the well-known electrical conductance quantization in units of \(e^2 / 2 \pi \hbar \) per (spin-resolved) channel in one-dimensional mesoscopic conductors.\(^3\)\(^5\)\(^6\) Electrical conductance quantization and many other aspects of mesoscopic transport in one-dimensional Fermi liquids, as well as edge-state transport in integral quantum Hall effect systems, can be understood with the Landauer and Landauer-Büttiker formalisms.\(^5\)\(^6\)

The conventional Landauer formula describes charge transport in mesoscopic conductors in the limit where there exists one or more propagating channels.\(^7\) Another important transport regime is the weak-tunneling limit, where the charge conductance is much less than \(e^2 / 2 \pi \hbar \) and, as shown by Schrieffer et al.,\(^8\)\(^9\) is determined by the density-of-states (DOS) obtained from the one-particle Green’s function.

The thermal analog of the weak-tunneling limit has not been addressed theoretically and is interesting for several reasons. First, a microscopic quantum description of thermal conduction through weak links is crucial for understanding energy dissipation in nanostructures such as nanoparticles, nanotubes, molecular circuits, and nanometer-scale electromechanical systems. As we shall demonstrate, the classical theory of thermal conduction, based on the heat equation, is entirely inapplicable to these systems at low temperatures. Second, thermal conduction through a weak link connected to a macroscopic solid turns out to be a sensitive local probe of the surface vibrational DOS of that solid, suggesting the possibility of an atomic-scale surface microscopy based on a scanning thermal probe.

In this paper we calculate the rate \(I_\text{th} \) of thermal energy flow between two macroscopic bodies, each in thermodynamic equilibrium, and joined by a weak mechanical link. The weak link may consist of one or more chemical bonds, or by a narrow “neck” of dielectric material, both of which can be accurately modeled by a harmonic spring of stiffness \(K \). We obtain a general expression for the thermal current that can be regarded as a thermal analog of the well-known formula, derived by Schrieffer et al.,\(^9\) for the electrical current through a resistive barrier. Our result can also be interpreted as an application of the thermal Landauer formula\(^2\)\(^10\) in the weak-tunneling limit, with the energy-dependent phonon-transmission probability calculated microscopically.

Our work is also related to the classic work of Little\(^11\) on the thermal boundary resistance at an interface between two dielectrics, a solid-solid analog of the Kapitza resistance between solids and superfluid Helium caused by phonon scattering at the interface. A tunneling-Hamiltonian approach similar to ours has been applied to the Kapitza resistance problem by Sheard and Toombs.\(^12\) In our geometry, however, the thermal resistance comes from scattering at the weak link, and the thermal current depends on the elastic properties of the link and does not vanish if the solids are identical. Heat transport in mesoscopic junctions has been studied recently with the scattering approach in an interesting paper by Cross and Lifshitz\(^13\) (following earlier related work by Angelescu et al.\(^14\),\(^15\),\(^16\), and Leitner and collaborators have calculated the thermal conductance of molecules and nanocrystals.\(^14\) Thermal transport through weak links has also been studied in conductors, including the two-dimensional electron gas\(^15\)\(^16\) and one-dimensional Luttinger liquids.\(^17\)

The organization of our paper is as follows: In the next section we describe in detail our mesoscopic weak-link model, and in Sec. III we define and calculate the local vibrational DOS for the macroscopic solids. A general expression for the thermal current is derived in Sec. IV. Some experimental implications are discussed in Sec. V, where we calculate the thermal conductance through a nanometer-scale junction in Si. Section VI contains a discussion of the differences between electron and phonon tunneling, and also of the role of phonon phase coherence in this work.

II. MESOSCOPIC WEAK LINK

The model we consider is as follows: Two macroscopic solids \(L \) and \(R \) are held at fixed temperatures \(T_L \) and \(T_R \). The two bodies are assumed to be electrically insulating, so that...
Here \(u_i^j \) is the normal component of the displacement field \(u(\mathbf{r}) \) at the surface of body \(I \) at the point of connection to the weak link, with the local surface normal (of, say, solid \(L \)) taken to be in the \(z \) direction. The surface displacements can be expanded in a basis of phonon creation and annihilation operators as

\[
\delta H = \frac{1}{2} K (u_L^z - u_R^z)^2.
\]

The vibrational modes of the isolated bodies are labeled by \(n \) and have energies \(\omega_n \). Our analysis is valid for any spectrum \(\omega_n \). The mesoscopic weak-link model is illustrated in Fig. 1.

The two macroscopic solids are connected by a weak mechanical link, which we model by a harmonic spring with stiffness \(K \),

\[
d_H = \frac{1}{2} K (u_L^z - u_R^z)^2.
\]

The macroscopic bodies act as thermal reservoirs, and are taken to be ideal thermal conductors. In particular, they are assumed to be harmonic [see Eq. (2)]. Therefore, the thermal resistance we calculate is caused entirely by the scattering of phonons at the junction between the reservoirs and the weak link, and by the finite transmission probability through the link itself.

III. LOCAL VIBRATIONAL DOS

In what follows we will need the local vibrational DOS (or, more precisely, local spectral density) of the bulk solids, evaluated at the point of contact with the weak link. These can be obtained from the retarded surface-displacement correlation functions

\[
D_I(t) = -i \theta(t) \langle [u_I^j(t), u_I^j(0)] \rangle_0
\]

for the isolated macroscopic bodies \(L \) and \(R \). Here

\[
\langle O \rangle_0 = \frac{\text{Tr} e^{-\beta H_0} O}{\text{Tr} e^{-\beta H_0}}
\]

denotes a thermal expectation value with respect to \(H_0 \). Using Eq. (6) leads to

\[
D_I(t) = -2 \theta(t) \sum_n |h_{I n}|^2 \sin(\omega_{I n} t).
\]

The local DOS \(N_I(\omega) \) is then defined in terms of the Fourier transform of (7),

\[
N_I(\omega) = -\frac{1}{\pi} \text{Im} D_I(\omega).
\]

Then we have

\[
N_I(\omega) = \sum_n |h_{I n}|^2 [\delta(\omega - \omega_{I n}) - \delta(\omega + \omega_{I n})].
\]

In many cases of interest the local spectral density is an algebraic function of energy at low energies,

\[
N_I(\omega) = \text{const} \times \omega^\alpha,
\]
where \(\alpha \) is a constant. For example, \(\alpha = 1 \) at the planar surface of a semi-infinite isotropic elastic continuum (see below). [Because the elasticity theory equations are second order in time, the DOS as defined in Eq. (10) is different than the thermodynamic DOS: In a uniform bulk system \(N(\omega) \) is proportional to the thermodynamic DOS divided by \(\omega \). The definition (10), however, is the one most relevant to the present work.]

IV. THERMAL CURRENT

We now calculate the heat flow between the two bodies joined by the weak link. The complete system is described by the Hamiltonian

\[
H = H_0 + \delta H.
\]

We define a thermal current operator \(\hat{I}_\text{th} \) according to

\[
\hat{I}_\text{th} = \delta H_R = i[\hat{H}, \hat{H}_R].
\]

The expectation value of \(\hat{I}_\text{th} \) is the energy per unit time flowing from the left to the right body.

Writing the interaction (5) as

\[
\delta H = \frac{i}{2} K \sum_{nn'} (A_{Ln} - A_{Ln'}) (A_{Ln'} - A_{Ln}),
\]

where

\[
A_{Ln} = h_{Ln} a_{Ln} + h_{Ln}^*,
\]

we find that the thermal current operator then takes the form

\[
\hat{I}_\text{th} = \frac{iK}{2} \sum_{nn'} \omega_{Rn} \{ A_{Ln} - A_{Ln'}, h_{Ln} a_{Ln'} - h_{Ln'}^* a_{Ln} \},
\]

where \(\{ \ldots \} \) is an anticommutator.

The equation of motion for the density matrix in the interaction representation is

\[
\partial_t \rho(t) = i[\rho(t), \delta H(t)],
\]

where

\[
\delta H(t) = e^{iH_0 t} O e^{-iH_0 t}.
\]

From Eq. (18) we find that the nonequilibrium thermal current to leading order is

\[
I_{th}(t) = i \int_0^t dt' \left\langle \delta H(t'), \hat{I}_\text{th}(t) \right\rangle_0.
\]

Evaluating Eq. (20) leads to our principal result (with factors of \(\hbar \) reinstated)

\[
I_{th} = \frac{2\pi K^2}{\hbar} \int_0^\infty d\epsilon \epsilon N_L(\epsilon) N_R(\epsilon) [n_L(\epsilon) - n_R(\epsilon)],
\]

an expression analogous to the formula derived by Schrieffer et al.\(^9\) for the electrical current through a tunneling barrier. Here \(n_L(\epsilon) \) and \(n_R(\epsilon) \) are Bose distribution functions

\[
n(\epsilon) = 1/(e^{\epsilon/k_B T} - 1)
\]

with temperatures \(T_L \) and \(T_R \). The details leading to Eq. (21) are given in Appendix A.

Our result (21) shows that the thermal current between a dielectric held at zero temperature and a second dielectric at temperature \(T \) will be a power-law function of \(T \), in striking contrast with nonmesoscopic thermal transport. For example, assuming a spectral density of the form (12) leads at low temperature to

\[
I_{th} \propto T^{2\alpha + 1},
\]

where \(T \) is the temperature of the second body.

The linear thermal conductance, defined by

\[
G_{th} = \lim_{T_L - T_R} \frac{I_{th}}{T_L - T_R},
\]

is given by

\[
G_{th} = \frac{2\pi K^2}{\hbar} \int_0^\infty d\epsilon \epsilon N_L(\epsilon) N_R(\epsilon) \frac{\partial n(\epsilon)}{\partial T}.
\]

This expression, along with Eq. (12), shows that the linear thermal conductance between two dielectrics held at a common temperature \(T \), varies at low temperature as a power law in \(T \),

\[
G_{th} \propto T^{2\alpha + 1},
\]

where \(\alpha \) is the exponent characterizing the power-law spectral density at low energies.

V. THERMAL CONDUCTANCE OF NANOMETER-SCALE SILICON JUNCTION

In this section we give a simple application of our theory to a structure consisting of a cylindrical neck of Si material connecting two semi-infinite Si crystals. The macroscopic solids act as thermal-phonon reservoirs. To be in the mesoscopic regime we assume the dimensions of the weak link to be smaller than the phase-coherence length of the relevant thermal phonons. The geometry of the system we consider is shown schematically in Fig. 2.

To apply our formula (25) we need the phonon spectral density at the surface of Si, and also the effective spring constant of the link. The spectral density at energies much less than the Debye energy may be obtained from elasticity theory. This approach, which requires a detailed consideration of the vibrational modes of a semi-infinite elastic continuum with a stress-free planar surface, is carried out in Appendix B. We show there that the spectral density at the surface of Si (approximating it to be isotropic) is

\[
N(\epsilon) = C\epsilon, \quad C = 1.3 \times 10^8 \text{ cm}^2 \text{ erg}^{-2}.
\]

Then using Eq. (25) we obtain

\[
G_{th} = (8\pi^2 K^2 C^2 v_L^4/15\hbar)T^3.
\]

The longitudinal stiffness of the mechanical link, a cylinder of length \(l \) and diameter \(d \), is
where Y is Young’s modulus. For Si, $Y \approx 1.3 \times 10^{12} \text{ dyn cm}^{-2}$, and assuming link dimensions of $l = 10 \text{ nm}$ and $d = 1 \text{ nm}$, we obtain

$$K = 1.0 \times 10^4 \text{ erg cm}^{-2},$$

and a thermal conductance of

$$G_{\text{th}} = (9.5 \times 10^{-11} \text{ erg s}^{-1} \text{ K}^{-4}) T^3$$

and

$$= (9.5 \times 10^{-18} \text{ J s}^{-1} \text{ K}^{-4}) T^3.$$

The result (32) is shown in Fig. 3.

Cross and Lifshitz have calculated the vibrational transmission probability (ratio of transmitted to incident vibrational energy flux) in a thin-plate analog of the system shown in Fig. 2. Imposing stress-free boundary conditions on all surfaces, they find that the transmission probability $T(\omega)$ from a reservoir to the wire (assumed infinitely long), or the reverse, vanishes as ω in the low-frequency limit. If the transmission probability from reservoir to reservoir, through a wire of finite length, is approximated as $T^2(\omega)$, which neglects resonances, then the Landauer formula yields a low-temperature thermal conductance proportional to T^3, in qualitative agreement with our result.

Our result (32) is valid at low temperatures only. There are five reasons why our analysis becomes invalid as the temperature is increased: The first is that we have assumed the weak link to be of mesoscopic dimensions. As the temperature increases, anharmonic interaction will eventually make the phonon phase-coherence length smaller than the size of the link. While an estimate of the phase-coherence length is beyond the scope of this work, the experiment of Schwab et al. suggests that in Si it is at least 1 nm at 1 K. The second is that our estimate of the spectral density is only valid for temperatures much less than the Debye temperature of Si, about 625 K. The third reason is that the leading-order perturbation theory we have used breaks down when G_{th} approaches the thermal conductance $\pi k_B^2 T/6 \hbar$ corresponding to one propagating channel, shown as a thin dotted line in Fig. 3. The fourth reason is that we have neglected any electronic contribution to G_{th}, which is correct only when $k_B T$ is much less than the Si band gap. And the fifth reason is that we have neglected the vibrational degrees of freedom of the link itself, which become important for temperatures above its lowest internal vibrational mode energy of approximately 20 K. Taking all of these factors into consideration suggests that Eq. (32) is probably not quantitatively correct beyond about 10 K.

VI. DISCUSSION

In this paper we have studied the thermal analog of the weak-tunneling limit of charge conduction—which might be regarded as phonon “tunneling”—and find many similarities to electron tunneling. There are a few important differences, however.

Electron tunneling, as it is usually defined, involves the passage of an electron through a classically forbidden region. In the thermal case, a phonon of energy ϵ is never in a region that does not support a mode at that energy. For example, the harmonic spring employed in Eq. (5) can support three propagating phonon channels, but phonons incident on the weak link are mostly reflected back into the macroscopic dielectrics. Whereas the tunneling rate of an electron at a fixed energy through a forbidden region of thickness l typically varies exponentially with l in the weak-tunneling limit, the thickness dependence in the phonon-tunneling case is different. In the example discussed in Sec. V, the thermal conductance varies with length l of the bridge as $1/l^2$, be-
cause the effective spring constant (29) of the bridge becomes softer with increasing t.

We have demonstrated that the classical theory of thermal conduction, based on the heat equation and on the concept of a local thermal conductivity, is entirely applicable to mesoscopic dielectrics. In a mesoscopic dielectric, thermal resistance is caused by elastic scattering of phonons, whereas in an infinite, disorder-free crystal it is caused by inelastic scattering due to anharmonicity. In the example of Sec. V, the quantum result (28) is determined by the mechanical properties of the bridge material, through the elastic modulus Y, whereas the classical conductivity would be determined by the bridge material’s bulk thermal conductivity κ.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under CAREER Grant No. DMR-0093217, and by the Research Corporation. It is a pleasure to thank Andrew Cleland and Steve Lewis for useful discussions.

APPENDIX A: GENERAL FORMULA FOR THE THERMAL CURRENT

Evaluating (20) we find

$$I_{th}(t) = \frac{K^2}{2} \sum_{n,n'} \int_0^t dt' \omega_{Rn} \text{Re}\{\{A_{Ln'}(t') - A_{Rn'}(t')\}[A_{Ln'}(t') - A_{Rn'}(t')]h_{Rn} a_{Rn}(t) - h_{Rn}^* a_{Rn}^\dagger(t) \}0, \quad (A1)$$

and, after further simplification,

$$I_{th}(t) = \frac{K^2}{2} \sum_{n,n'} \int_0^t dt' \omega_{Rn} \text{Re}\{\{[A_{Ln'}(t),A_{Ln'}(t')] + [A_{Rn'}(t),A_{Rn'}(t')]\}[h_{Rn}^* a_{Rn}(t) - h_{Rn} a_{Rn}^\dagger(t)]\}0, \quad (A2)$$

where we have used the fact that the commutators are c-numbers. The required thermal expectation values are

$$\{[A_{Ln'}(t),A_{Ln'}(t')]\}0 = 2 |h_{Ln'}|^2 [1 + 2n_L(\omega_{Ln'})] \cos \omega_{Ln'}(t-t'), \quad (A3)$$

$$\{[A_{Ln'}(t),A_{Ln'}(t')]\}0 = -2i |h_{Ln'}|^2 \sin \omega_{Ln'}(t-t'), \quad (A4)$$

$$\{[h_{Rn} a_{Rn}(t) - h_{Rn}^* a_{Rn}^\dagger(t),A_{Rn'}(t')]\}0 = 2 |h_{Rn}|^2 \cos \omega_{Rn}(t-t'), \quad (A5)$$

and

$$\{[h_{Rn} a_{Rn}(t) - h_{Rn}^* a_{Rn}^\dagger(t),A_{Rn'}(t')]\}0 = -2i |h_{Rn}|^2 [1 + 2n_R(\omega_{Rn'})] \sin \omega_{Rn}(t-t'). \quad (A6)$$

These lead to

$$I_{th}(t) = 2K^2 \sum_{n,n'} \omega_{Rn} |h_{Rn}|^2 \int_0^t dt' [1 + 2n_L(\omega_{Ln'})] \cos \omega_{Ln'}(t-t') \cos \omega_{Rn}(t-t')$$

$$+ |h_{Rn}|^2 [1 + 2n_R(\omega_{Rn'})] \cos \omega_{Rn}(t-t') \cos \omega_{Ln'}(t-t') - |h_{Ln'}|^2 [1 + 2n_L(\omega_{Ln'})]$$

$$\times \sin \omega_{Ln'}(t-t') \sin \omega_{Rn}(t-t') - |h_{Rn}|^2 [1 + 2n_R(\omega_{Rn'})] \sin \omega_{Rn}(t-t') \sin \omega_{Ln'}(t-t').$$

Here $n_L(\epsilon)$ and $n_R(\epsilon)$ are Bose distribution functions [see Eq. (22)] with temperatures T_L and T_R. Next we make a change of variables $t' \to t-t'$, take the $t \to \infty$ limit, and include a convergence factor to regularize the long-time behavior of the resulting integrals. Finally, using the identities

$$\int_0^\infty dt \cos \omega t e^{-it} = \frac{\pi}{2} [\delta(\omega - \omega') + \delta(\omega + \omega')] \quad (A8)$$

and

$$\int_0^\infty dt \cos \omega t e^{-it} = \frac{\pi}{2} [\delta(\omega - \omega') + \delta(\omega + \omega')]$$

and
where ζ is a positive infinitesimal, and reinstating factors of \hbar, leads to Eq. (21).

In Eqs. (21) and (25) we have introduced an energy-dependent DOS,

$$N_\varepsilon(e) = \sum_\pi |h_{\text{m}}|^2 [\delta(e - \hbar\omega_{\text{m}}) - \delta(e + \hbar\omega_{\text{m}})].$$

(A10)

which has dimensions of (length)2/energy. In a homogeneous elastic continuum of mass density ρ and volume V, $N(\varepsilon)$ is equal to $\hbar^2/2\rho\varepsilon$ times the thermodynamic DOS per volume, $V^{-1}\sum_\varepsilon\delta(e - \varepsilon_{\text{m}})$.

APPENDIX B: SURFACE DOS OF SILICON

In this appendix we calculate the local phonon DOS at the stress-free planar surface of a semi-infinite isotropic elastic continuum, following closely the work of Ezawa,\(^{21}\) and use this to estimate the DOS at the surface of Si. The substrate is assumed to occupy the space $z = 0$. The vibrational modes are labeled by $n = (m, K, c)$, where m is a branch index taking the values S_H, \pm, 0, and $c = \omega/|K|$ is a parameter (continuous for all branches except $m = R$) with dimensions of velocity. In contrast to Ref. 21 we shall use periodic boundary conditions in the x and y directions, over a square of area A.

In our analysis we will approximate Si as an isotropic elastic continuum with longitudinal and transverse sound velocities

$$v_L = 8.5 \times 10^5 \text{ cm s}^{-1},$$

$$v_T = 5.9 \times 10^5 \text{ cm s}^{-1},$$

and mass density

$$\rho = 2.3 \text{ g cm}^{-3}.$$ (B1)

It will be convenient to treat the Rayleigh branch ($m = R$) separately, and then consider the branches with continuous c. In the Rayleigh case the displacement field is expanded as\(^{22}\)

$$u = \sum_K \sqrt{\frac{\hbar}{2\rho c_R |K|}} [a_{R}\mathbf{f}_{R} + a_{R}^{\dagger}\mathbf{f}_{R}^{\dagger}],$$

(B3)

where the vibrational eigenfunctions $\mathbf{f}_{R}(\mathbf{r})$ have dimensions of $L^{-3/2}$ and satisfy

$$\int d^3r f_{R}^{\dagger}(\mathbf{r}) f_{R}^{\dagger}(\mathbf{r}') = \delta_{KK'}.$$ (B4)

Here $c_{R} = \xi v_1$, where ξ is the root between 0 and 1 of

$$\xi^4 - 8\xi^3 + 8(3 - 2\nu^2)\xi^2 - 16(1 - \nu^2) = 0,$$

(B5)

and where

$$\nu = v_T/v_L$$ (B6)

is the ratio of transverse and longitudinal bulk sound velocities. For Si, $\nu = 0.69$ and $\xi = 0.88$; hence

$$c_R = 5.2 \times 10^5 \text{ cm s}^{-1}.$$ (B7)

The z component of the vibrational eigenfunction at the point $\mathbf{r} = 0$ on the surface is

$$f_R(0) = \sqrt{\frac{2\gamma \eta |K|}{(\gamma - \eta)(\gamma - \eta + 2\eta^2)A}} \left[1 - \left(\frac{2}{1 + \eta} \right) \right],$$ (B8)

where

$$\gamma = \sqrt{1 - (c_R/v_L)^2} \quad \text{and} \quad \eta = \sqrt{1 - (c_R/v_L)^2}.$$ (B9)

We find that the Rayleigh branch contributes to the local DOS (10) an amount (for positive ω)

$$R \text{ branch: } N(\omega) = g_1 \frac{\hbar \omega}{4\pi \rho c_1^3}, \quad g_1 = 0.42.$$ (B10)

Note that g_1 generally depends on ν, the value quoted in (B10) corresponding to Si.

Next we consider the branches with continuous c. Here

$$u = \sum_K \int d\mathbf{c} \sqrt{\frac{\hbar}{2\rho c |K|}} [a_{mKc} \mathbf{f}_{mKc} + a_{mKc}^{\dagger} \mathbf{f}_{mKc}^{\dagger}],$$

(B11)

where the vibrational eigenfunctions have dimensions of $L^{-3/2}c^{-1/2}$ and satisfy

$$\int d^3r f_{mKc}^{\dagger}(\mathbf{r}) \cdot f_{mK'c'}(\mathbf{r}') = \delta_{mm'} \delta_{KK'} \delta(c - c').$$ (B12)

The range Γ of the c integration in Eq. (B11) is $[v_1, \infty]$ for $m = S_H$, $[v_1, \infty]$ for $m = \pm$, and $[v_1, v_1]$ for the $m = 0$ branch. The contribution to the local DOS (for $\omega \geq 0$) from these branches is given by

$$N(\omega) = \frac{\hbar}{2\rho \omega} \sum_K \int_{\Gamma} d\mathbf{c} \left| f_{mKc}(0) \right|^2 \delta(\omega - c|K|).$$

(B13)

The S_H modes are polarized in the xy plane and therefore do not contribute to (10). The \pm modes have surface amplitude
\begin{equation}
\left[\frac{|K|}{4\pi c \alpha A} \right] = \pm \frac{1}{\sqrt{\alpha}}(1 + A \pm i B) + \frac{i}{\sqrt{\beta}}(1 - A \mp i B), \tag{B14}
\end{equation}

where
\begin{equation}
A = \frac{(\beta^2 - 1)^2 - 4 \alpha \beta}{(\beta^2 - 1)^2 + 4 \alpha \beta}, \tag{B15}
\end{equation}
\begin{equation}
B = \frac{4 \alpha \beta (\beta^2 - 1)}{(\beta^2 - 1)^2 + 4 \alpha \beta}, \tag{B16}
\end{equation}
\begin{equation}
\alpha = \sqrt{(c/v)^2 - 1} \quad \text{and} \quad \beta = \sqrt{(c/v)^2 - 1}, \tag{B17}
\end{equation}
are all real functions of \(c\). The \(m = \pm\) branches together contribute an amount
\begin{equation}
\pm \text{branches:} \quad N(\omega) = \frac{g_2 \hbar \omega}{4 \pi^2 \rho v_1^3}, \quad g_2 \approx 1.0. \tag{B18}
\end{equation}
The value for \(g_2\), obtained by doing the integration over \(c\) in Eq. (B13) numerically, is valid only for the value of \(\nu\) corresponding to Si.

The \(m=0\) branch has amplitude
\begin{equation}
f_0(0) = \frac{\sqrt{|K|}}{2 \pi c \beta A} \left[- \gamma D + i(1 - E) \right], \tag{B19}
\end{equation}
where
\begin{equation}
D = \frac{4 \beta (\beta^2 - 1)^3 - 16i \gamma \beta^2 (\beta^2 - 1)}{(\beta^2 - 1)^4 + 16 \gamma^2 \beta^2}, \tag{B20}
\end{equation}
and
\begin{equation}
E = \frac{(\beta^2 - 1)^4 - 16 \gamma^2 \beta^2 - 8i \gamma \beta (\beta^2 - 1)^2}{(\beta^2 - 1)^4 + 16 \gamma^2 \beta^2}, \tag{B21}
\end{equation}
are complex-valued functions of \(c\). This leads to a contribution
\begin{equation}
0 \text{ branch:} \quad N(\omega) = \frac{\hbar \omega}{8 \pi^2 \rho v_1^3}, \quad g_3 \approx 0.59. \tag{B22}
\end{equation}
As before, \(g_3\) is obtained numerically and assumes a value of \(\nu\) valid for Si. Combining the three contributions (B10), (B18), and (B22), yields
\begin{equation}
N(\omega) = \frac{\hbar \omega}{4 \pi^2 \rho} \left[\frac{g_1 \pi}{c_R^3 v_1^3} + \frac{g_2}{2 v_1^3} + \frac{g_3}{2 v_1^3} \right]. \tag{B23}
\end{equation}
Using Eq. (B23) we obtain the estimate (27).