 PHYS 1112: Introductory Physics — Optics, Electricity & Magnetism

Section: 25676; TH 9:35 A.M. - 10:50 A.M.
Lectures will be given in Zoom sessions at regular class times. No recordings!
See ELC for Zoom links.

Instructor: Professor Henning H. Meyer
Office hours: H 3:00 P.M. - 4:30 P.M.
Problem Zoom Session: H 5:00 P.M. - 6:00 P.M. or day before exam.
Office: Room 217(old: 223B), Physics Building
Email: hmeyer@uga.edu, add ‘PHYS1112 Period2’ to subject line.
No individual communication via ELC!!!
ELC: General announcements; Posting of lecture slides/comments, homework or exam solutions, practice exams.

I. GENERAL INFORMATION

• Primary method of communication: during office hours;
• Email through: hmeyer@uga.edu
• Text: James S. Walker, Physics, Volume 2 5th edition (2017). (3rd or 4th editions are fine, but you will be responsible for knowing about any changes in content.) The bookstore describes the text as: Physics Volume 2& VP AC MOD MST.
• Make sure you get a copy that says: w/MasteringPhysics.
• Mastering Physics: To register look for Course Name: PHYS1112-Fall2020-MeyerPeriod2 with Course ID: meyer84802 – You will need to enter your UGA ID, i.e. your 81X number. Enter 9 digits only – do not enter the last digit.

II. ACADEMIC HONESTY

• The University of Georgia has a comprehensive policy on academic honesty, described in a document entitled “A Culture of Honesty.”
• The document is available online at https://honesty.uga.edu/_resources/documents/academic_honesty_policy_2017.pdf.
• The policy covers all academic work. As a UGA student, you are responsible for knowing and understanding this policy.
• If you have any question about the appropriateness of your actions or your work, you are obligated to ask me for clarification.

III. GRADING POLICY

• Overall grade will be determined as follows:
• 20% LAB grade (completion mandatory; see Section V for details)
 15% HOMEWORK (no makeup; working in groups OK; must be submitted individually)
 45% EXAM 1 (no makeup; must be taken with the section you are registered for)
 EXAM 2 (no makeup; must be taken with the section you are registered for)
 EXAM 3 (no makeup; must be taken with the section you are registered for)
 EXAM 4 (no makeup; must be taken with the section you are registered for)
 Worst of 4 exams dropped
• 20% Final EXAM (no makeup, unless required by University Rules)

100% TOTAL
• Letter grades will be assigned in accordance with the following cut-offs (for additional rules see below):
 • F: [0, 55) D: [55, 65) C−: [65, 68) C: [68, 72) C+: [72, 75)
 • B−: [75, 78) B: [78, 82) B+: [82, 85) A−: [85, 90) A: [90, 100]
 • NOTE: There is no rounding; 64.99 = "D", etc.

IV. LABS (20%)
• All students are required to complete the LAB part of the class.
• Students who are not assigned a lab grade due to non-completion will automatically receive a failing grade ("F") for the course.
• PLEASE NOTE:
 ▪ Labs will start week of August 31.
 ▪ Lab syllabus: Use the link below from the Department’s web site, then scroll down to your particular lab section. https://www.physast.uga.edu/courses

V. HOMEWORK (15%)
• There will be a number of HOMEWORK assignments posted online (on the Mastering Physics website).
• All assignments count towards your grade.
• All assignments must be submitted on time.
• No makeup, no late submission.
• Rules:
 ▪ You may work in groups.
 ▪ You submit your work individually.

VI. EXAMS (45% TOTAL)
• There will be a total of four (4) EXAMS on selected chapters.
• Worst of the four exam grades will be dropped (such as, e.g., a “0” due to non-completion), so, technically, \(\frac{4}{4} \) each exam is worth 15%.
• No makeups or re-scheduling is permitted.

VII. FINAL EXAM (20% TOTAL)
• Final Exam is mass exam, date and time: Tuesday, Dec. 15; 7:00 - 10:00 P.M.
• Comprehensive final exam: All chapters covered in class
• No makeups or re-scheduling unless required by University rules.

• Rules for the EXAMS (All exams will be online through ELC):
 ▪ Recommendation: Prepare ONE (1) STANDARD SHEET of paper containing anything you want (e.g., physical constants, formulae, diagrams, problem solutions, etc.) ALL HANDWRITTEN. You may write on both sides
 ▪ A simple (non-graphing, non-symbolic, non-programmable) scientific calculator.
 ▪ No other electronic device(s) permitted.
 ▪ Must work individually.
VIII. INCOMPLETES

- You may be assigned an "I" (incomplete) for the course in accordance with the UGA Regulations, provided all of the following applies:
 - You received a non-failing grade in LABS (> 70)
 - You received a non-failing grade (> 55%) on at least one EXAM,
 - No violation of the Academic Honesty Policy took place during the course of the semester.

IX. ABSENCES

- You are responsible for obtaining any announcements/materials/information that were given out in a class that you missed.

X. WITHDRAWALS

- The Undergraduate Bulletin and the Registrar’s Office website describe the University policies regarding withdrawals and incompletes. The deadline for withdrawal is **Tuesday, October 27th**.

XI. TUTORS

- Tutors are available through the following:
 - Department of Physics and Astronomy: https://www.physast.uga.edu/tutors/
 - UGA Tutoring Program: http://tutor.uga.edu/arc/tutoring/ Please remember: the goal is to learn from your tutor, not for them to do your homework for you.

XII. HOW TO DO WELL IN THIS CLASS

- Read each chapter before it is discussed in class.
- Attend every lecture.
- Participate actively in discussions.
- Re-read chapter carefully after class. Rework the notes taken during lecture.
- Do assigned homework.
- Solve as many end-of-chapter problems as possible.
- Use a buddy system: find a friend with whom to discuss physics.
- Think about physics on a regular basis.
- If everything fails, consider dropping the class before the deadline and retaking it at a later time.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Reading</th>
<th>Topics</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 20</td>
<td>–</td>
<td>Intro to this course; Principles of GO</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Aug 25</td>
<td>26.1-4</td>
<td>GO: Reflection; Plane mirrors; Spherical mirrors</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Aug 27</td>
<td>26.5-7</td>
<td>GO: Refraction; Total internal reflection; Ray tracing for lenses; thin lens equation</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>Sep 1</td>
<td>27.1-2</td>
<td>Oi: Human eye, camera; Corrective optics</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 3</td>
<td>27.3-5</td>
<td>Oi: Magnifying glass; Microscope; Telescope</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>Sep 8</td>
<td>26.5-7</td>
<td>GO: Reflection; Plane mirrors; Spherical mirrors</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Sep 10(E1)</td>
<td>Review</td>
<td>EXAM 1 (Chap26,27)</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>Sep 15</td>
<td>28.1-2</td>
<td>WO: Superposition & interference, two-slit experiment</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 17</td>
<td>28.4-6</td>
<td>WO: Single-slit diffraction; Diffraction gratings</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td>Sep 22</td>
<td>19.1-3</td>
<td>EF: Electric charge</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 24</td>
<td>19.4-5</td>
<td>EF: Insulators & conductors; Coulomb’s Law</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>Sep 29</td>
<td>19.6-7</td>
<td>EF: Shield & charge by induction, Electric flux & Gauss’ Law</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 1</td>
<td>Review</td>
<td>Review; Problem Solving</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>Oct 6 (E2)</td>
<td>20.1-2</td>
<td>EXAM 2 (Chap28,19)</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 8</td>
<td>REVISITING: Energy, WE-Theorem & Law-CE; Electric potential & energy; Energy conservation</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 13</td>
<td>20.3-4</td>
<td>EP: Electric potential of point charges; Equipot. surfaces & E-field</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 15</td>
<td>20.5-6</td>
<td>EP: Capacitors & dielectrics; Electric energy storage</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>Oct 20</td>
<td>21.1-4</td>
<td>DC: El. current; Ohm’s Law; Energy & pow in El.Circ.</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 22</td>
<td>21.5</td>
<td>DC: Resistors in series & parallel; Kirchhoff’s Rule</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>Oct 27 (E3)</td>
<td>22.1-2</td>
<td>EXAM 3 (Chap20,21)</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 29</td>
<td>Withdrawal Deadline</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nov 3</td>
<td>22.3-4</td>
<td>MF: Magnetic field; Magn. force on moving charges</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 5</td>
<td>22.5</td>
<td>MF: Motion of charged particles in magnetic field; Magnetic force on current-carrying wire</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td>Nov 10</td>
<td>22.6-8</td>
<td>MF: Ampere’s Law; loops & solenoids; Magnetism in matter</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 12</td>
<td>23.1-4</td>
<td>EMI: Induced EMF; Magnetic flux; Faraday’s Law, Lenz’s Rule</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>Nov 17</td>
<td>23.5-6</td>
<td>EMI: Work & E. Energy; Generators</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 19</td>
<td>Review</td>
<td>Review; Problem Solving</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td>Nov 24 (E4)</td>
<td>23.5-6</td>
<td>EMI: Inductance; RL circuits; Energy in a B-field Review</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>Dec 1</td>
<td>23.5-10</td>
<td>EMI: Inductance; RL circuits; Energy in a B-field Review</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>Dec 3</td>
<td>Review</td>
<td>Problem Solving</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td>Dec 15</td>
<td>FINAL EXAM 4 (Chap19-23,26-28) Time: 7-10pm</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>