PHYS 1111: Introductory Physics — Mechanics

Section: 25667; TH 12:45 P.M. - 2:00 P.M.
Lectures will be given in Zoom sessions at regular class times. No recordings!
See ELC for Zoom links.

Instructor: Professor Henning H. Meyer
Office hours: T 3:00 P.M. - 4:30 P.M.
Problem Zoom Session: T 5:00 P.M. - 6:00 P.M. or day before exam.
Office: Room 217(old: 223B), Physics Building
Email: hmeyer@uga.edu, add ‘PHYS1111 Period4’ to subject line.

No individual communication via ELC!!!
ELC: General announcements; Posting of lecture slides/comments, homework or exam solutions, practice exams.

I. GENERAL INFORMATION

- Primary method of communication: during office hours;
- Email through: hmeyer@uga.edu
- Text: James S. Walker, Physics, Volume 1 5th edition (2017). (3rd or 4th editions are fine, but you will be responsible for knowing about any changes in content.) The bookstore describes the text as: Physics Volume 1 & VP AC MOD MST. If you already have a book, you can also buy the access code online during the registration process.
- Otherwise, make sure you get a copy that says: w/MasteringPhysics.
- Mastering Physics: To register look for Course Name:
- PHYS1111-Fall2020-MeyerPeriod4 with Course ID: MPMEYER2020FPRD4 – You will need to enter your UGA ID, i.e. your 81X number. Enter 9 digits only – do not enter the last digit.

II. ACADEMIC HONESTY

- The University of Georgia has a comprehensive policy on academic honesty, described in a document entitled “A Culture of Honesty.”
- The document is available online at https://honesty.uga.edu/_resources/documents/academic_honesty_policy_2017.pdf.
- The policy covers all academic work. As a UGA student, you are responsible for knowing and understanding this policy.
- If you have any question about the appropriateness of your actions or your work, you are obligated to ask me for clarification.

III. GRADING POLICY

- Overall grade will be determined as follows:
- 20% LAB grade (completion mandatory; see Section V for details)
- 15% HOMEWORK (no makeup; working in groups OK; must be submitted individually)
- 45% EXAM 1 (no makeup; must be taken with the section you are registered for)
- EXAM 2 (no makeup; must be taken with the section you are registered for)
- EXAM 3 (no makeup; must be taken with the section you are registered for)
- EXAM 4 (no makeup; must be taken with the section you are registered for)
 Worst of 4 exams dropped
- 20% Final EXAM (no makeup, unless required by University Rules)

100% TOTAL
Letter grades will be assigned in accordance with the following cut-offs (for additional rules see below):

- **F**: [0, 55)
- **D**: [55, 65)
- **C−**: [65, 68)
- **C**: [68, 72)
- **C+**: [72, 75)
- **B−**: [75, 78)
- **B**: [78, 82)
- **B+**: [82, 85)
- **A−**: [85, 90)
- **A**: [90, 100]

NOTE: There is no rounding; 64.99 = "D", etc.

IV. LABS (20%)

- All students are required to complete the LAB part of the class.
- Students who are not assigned a lab grade due to non-completion will automatically receive a failing grade ("F") for the course.

PLEASE NOTE:
- Labs will start week of August 31.
- Lab syllabus: Use the link below from the Department’s web site, then scroll down to your particular lab section. https://www.physast.uga.edu/courses

V. HOMEWORK (15%)

- There will be a number of HOMEWORK assignments posted online (on the Mastering Physics website).
- All assignments count towards your grade.
- All assignments must be submitted on time.
- No makeup, no late submission.
- **Rules:**
 - You may work in groups.
 - You submit your work individually.

VI. EXAMS (45% TOTAL)

- There will be a total of four (4) EXAMS on selected chapters.
- Worst of the four exam grades will be dropped (such as, e.g., a “0” due to non-completion), so, technically, \(\frac{1}{4} \) each exam is worth 15%.
- **No makeups or re-scheduling is permitted.**

VII. FINAL EXAM (20% TOTAL)

- **Final Exam is mass exam, date and time: Tuesday, Dec. 15; 7:00 - 10:00 P.M.**
- **Comprehensive final exam: All chapters covered in class**
- **No makeups or re-scheduling unless required by University rules.**

Rules for the EXAMS (All exams will be online through ELC):

- Recommendation: Prepare ONE (1) STANDARD SHEET of paper containing anything you want (e.g., physical constants, formulae, diagrams, problem solutions, etc.) ALL HANDWRITTEN. You may write on both sides
- A simple (non-graphing, non-symbolic, non-programmable) scientific calculator.
- No other electronic device(s) permitted.
- Must work individually.
VIII. INCOMPLETES

- You may be assigned an "I" (incomplete) for the course in accordance with the UGA Regulations, provided all of the following applies:
 - You received a non-failing grade in LABS (> 70)
 - You received a non-failing grade (> 55%) on at least one EXAM,
 - No violation of the Academic Honesty Policy took place during the course of the semester.

IX. ABSENCES

- You are responsible for obtaining any announcements/materials/information that were given out in a class that you missed.

X. WITHDRAWALS

- The Undergraduate Bulletin and the Registrar’s Office website describe the University policies regarding withdrawals and incompletes. The deadline for withdrawal is **Tuesday, October 27th**.

XI. TUTORS

- Tutors are available through the following:
 - Department of Physics and Astronomy: https://www.physast.uga.edu/tutors/
 - UGA Tutoring Program: http://tutor.uga.edu/arc/tutoring/ Please remember: the goal is to learn from your tutor, not for them to do your homework for you.

XII. HOW TO DO WELL IN THIS CLASS

- Read each chapter before it is discussed in class.
- Attend every lecture.
- Participate actively in discussions.
- Re-read chapter carefully after class. Rework the notes taken during lecture.
- Do assigned homework.
- Solve as many end-of-chapter problems as possible.
- Use a buddy system: find a friend with whom to discuss physics.
- Think about physics on a regular basis.
- If everything fails, consider dropping the class before the deadline and retaking it at a later time.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Reading</th>
<th>Topics</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 20</td>
<td>1.1-8</td>
<td>Intro to this course; Introduction</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>Aug 25</td>
<td>2.1-7</td>
<td>1D Kinematics</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Aug 27</td>
<td>3.2-5</td>
<td>Vectors</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>Sep 1</td>
<td>3.6, 4.1-2</td>
<td>Relative motion, 2D Kinematics</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 3</td>
<td>4.3-5</td>
<td>2D Kinematics</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>Sep 8</td>
<td>Review; Problem Solving</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sep 10(E1)</td>
<td></td>
<td>EXAM 1 (Chap 2,4)</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td>Sep 15</td>
<td>5.1-3</td>
<td>Force, mass, Newton’s 1st and 2nd Laws</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 17</td>
<td>5.4-7</td>
<td>Newton’s 3rd Law, weight, and normal forces</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>Sep 22</td>
<td>6.1-4</td>
<td>Applications: Friction, tension, equilibrium</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 24</td>
<td>6.5</td>
<td>Circular Motion</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>Sep 29</td>
<td>7.1-4</td>
<td>Work and energy, power Review; Problem Solving</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 1</td>
<td></td>
<td>EXAM 2 (Chap 5-7)</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>Oct 6 (E2)</td>
<td>8.1-3</td>
<td>Conservative forces, energy conservation</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 8</td>
<td></td>
<td>Work for non-conservative forces, potential energy curves</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>Oct 15</td>
<td>8.4-5</td>
<td>Linear momentum</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 15</td>
<td>9.1-3</td>
<td>Review; Problem Solving</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>Oct 20</td>
<td>9.4-7</td>
<td>Collisions</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 22</td>
<td></td>
<td>REVIEW; Problem Solving</td>
<td>H</td>
</tr>
<tr>
<td>11</td>
<td>Oct 27 (E3)</td>
<td>10.1-4</td>
<td>EXAM 3 (Chap 8-9)</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 29</td>
<td></td>
<td>Withdrawal Deadline</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rotational kinematics</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td>Nov 3</td>
<td>10.1-4</td>
<td>Rotational kinematics</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 5</td>
<td>10.5-6,11.1-2</td>
<td>Rotational dynamics, torque, energy</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>Nov 10</td>
<td>11.3-5</td>
<td>Rotational equilibrium and dynamics</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 12</td>
<td>11.6-8</td>
<td>Angular momentum, rotational work</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td>Nov 17</td>
<td></td>
<td>Review; Problem Solving</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 19 (E4)</td>
<td></td>
<td>EXAM 4 (Chap 10-11)</td>
<td>H</td>
</tr>
<tr>
<td>15</td>
<td>Nov 24</td>
<td>12.1-5</td>
<td>Gravitation</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>Dec 1</td>
<td>13.1-6</td>
<td>Simple harmonic motion, pendulum;</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Dec 3</td>
<td>13.6</td>
<td>Review; Problem Solving</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td>Dec 15</td>
<td></td>
<td>FINAL EXAM 4 (Chap 1-13) Time: 7-10pm</td>
<td>T</td>
</tr>
</tbody>
</table>