Problem 1:

A particle of mass m in the infinite square well (of width a) starts out in the left half of
the well, and is (at $t = 0$) equally likely to be found at any point in that region.

(a) What is its initial wave function, $\Psi(x, 0)$? (Assume it is real. Don’t forget to
normalize it.)

(b) What is the probability that a measurement of the energy would yield the value
$\pi \hbar^2 / 2ma^2$?
Problem 2:

A particle of mass m is in the state

$$\Psi(x,t) = A \exp\{-a[(mx^2/h) + it]\}$$

where A and a are positive real constants.

(a) Find A.

(b) For what potential energy function $V(x)$ does Ψ satisfy the Schrödinger equation?

(c) Calculate the expectation values of x, x^2, p, and p^2.
Problem 3:

In the Earth’s reference frame, a tree is at the origin and a pole is at \(x = 30 \text{ km} \). Lightning strikes both the tree and the pole at \(t = 10 \mu s \). The lightning strikes are observed by a rocket traveling in the \(x \)-direction at \(0.5c \).

(a) What are the spacetime coordinates for these two events in the rocket’s reference frame?

(b) Are the events simultaneous in the rocket’s frame? If not, which occurs first?
Problem 4:

Consider a head-on, elastic collision between a massless photon (momentum \(p_0 \) and energy \(E_0 \)) and a stationary free electron.

(a) Assuming that the photon bounces directly back with momentum \(p \) (in the direction of \(-p_0\)) and energy \(E \), use conservation of energy and momentum to find \(p \).

(b) Verify that your answer agrees with that given by Compton’s formula with \(\theta = \pi \).
Problem 5:

Figure Caption: Shown above is the energy level diagram for a hydrogen atom, showing the four lowest energy levels. Ignoring electron spin s, there is one independent state with energy $=-13.6 \text{ eV}$, four independent states with energy $=-3.4 \text{ eV}$, nine independent states with energy $=-1.5 \text{ eV}$, etc.

Estimate the ratio of the probability that a hydrogen atom at warm room temperature (300 K) is in one of its first excited states ($n = 2$) relative to the probability of it being in the ground state ($n = 1$). Don’t forget to take degeneracy into account. Show all steps in the calculation, even if you think that the answer will be trivial. The value of Boltzmann’s constant, $k = 8.62 \times 10^{-5} \text{ eV/K}$.
