PHYS 1111
Introductory Physics - Mechanics, Waves, and Thermodynamics
Fall 2014
Instructor: Phillip Stancil
TR 11:00am-12:15pm or 2:00pm-3:15pm, Physics 202
Prerequisite: MATH 1113

Instructor Information
• Office: Room 325A, Physics Bldg.
• Phone: 706-583-8226
• Fax: 706-542-2492
• Email: stancil@physast.uga.edu
• Website: www.physast.uga.edu/people/phillip_stancil

Times and Locations
• Lectures: T(Tu)R(Th), Period 3 and 5, Room 202, Physics Bldg.
• Office hours: Mon. 11am-12pm, Tues. 4:30-5:30pm, Thur. 1pm-1:50pm
• Laboratory: Various times, Physics 314

Required Course Materials
• A SIMPLE, non-programmable, scientific calculator (note: graphing calculators CAN NOT be used on tests/exams.)

Required Resources
• Course Website: http://www.physast.uga.edu/classes/phys1111/stancil/.
• Learning Online Network with CAPA (LON-CAPA): http://spock.physast.uga.edu/. Online homework system. See Homework section for more information.

Optional Resources
Grading Policy

Your final score will be determined from your overall performance in the class including tests, final exam, online homework, and laboratory grade with the following weights:

- 45% Three in-class tests (15% each)
- 30% Final exam score
- 10% LON-CAPA online homework
- 15% Overall laboratory score

Final letter grades will be based on the class statistical distribution of total composite scores with the mean score corresponding to a middle-C. However, the lower range of the grade distributions will be no higher than 95.00 A, 90.00 A-, 86.67 B+, 83.33 B, 80.00 B-, 76.67 C+, 73.33 C, 70.00 C-, and 60.00 D.

Test and Exam Policy

There will be three in-class tests and one final exam. All tests and exams are closed book and closed notes. You can only bring pencil and calculator to the tests and exam. Calculators must be non-programmable, i.e. no formulae can be stored in your calculator. Equation sheets will be provided. The tests and exam will consist of problems and conceptual questions in multiple-choice and/or true-false format. Further details about each test and the exam will be given in class.

The test make-up policy is as follows:

1. If you miss a test you have the option of taking a make-up test, typically to be given within a week of the original test date (see below) or to let your final exam score replace the missed test (i.e., your final exam would count 45% of your total course grade).
2. Using your final exam score to replace a missed test, can only be applied for one missed test.
3. Make-up tests will typically be given on the first Monday (if not a holiday) following the original test date. The time will be determined by the instructor to accommodate the most number of students who need the make-up test and you must attend that make-up session. Alternate times/dates will not be given. By default, make-up tests are designed to be more difficult.
4. In order to be eligible for a make-up test or for your final exam grade to replace the missed test, you must have a documented excuse for missing the test (e.g., doctor’s note for a serious illness) and you must contact me (via email or telephone) BEFORE the test.
5. An unexcused missed test results in an automatic zero.
6. If you miss a second test or the final exam, regardless of the excuse, the maximum grade you can receive in the course is an Incomplete. A missed final exam can only be made-up under extreme circumstances.
7. In order to be eligible for a make-up final exam, you must inform me at least two weeks before the final exam, so arrangements can be made.
8. The anticipated test schedule is attached, though it may be possible that the dates of the in-class tests can change. Announcements of the fact will be made in class. “I did not know we had a test today” is an unacceptable excuse.
Homework Policy

Homework assignments will consist of two parts. The first part will be done online for a grade with the Learning Online Network with a Computer Assisted Personalized Approach (LON-CAPA) system. More details about using LON-CAPA will be given in class and on the course website. The second part of the homework will be the End of Chapter (EOC) problems from Walker, 4th ed. (or 4/E), but which will NOT be collected for grading. Assignments will generally be made by Thursday (or Tuesday) of each week with the LON-CAPA portion due by the following Wednesday (or Monday) night, while the EOC problem assignments will be posted on the class website. While you will receive no grade for the EOC portion, it is the most important thing you can do in this course to learn physics. Concepts you learn from the online problems are applied to more complex, and often, practical problems in the EOC portion. I suggest you do all of the assigned problems as carefully as you can. It is highly likely that one or more online or EOC problem will appear, in some form, on a tests and/or the final exam. You are encouraged to work with your fellow classmates on the EOC portion of the homework assignments, but the LON-CAPA part must be your own work. You are also encouraged to work additional problems - as many as possible!

Bonus Points

Throughout the semester, pop quizzes will be given in class (roughly every other week). Each quiz will consist of one multiple-choice or true-false question. The average of all quizzes is worth a maximum of 2 points. Further, during most class periods, I’ll randomly call on some students to work an example problem or other task. If the student is in attendance and assists, they will receive 1 bonus point. The maximum number of bonus points for the course is 3. You can receive 1 bonus point just for taking all quizzes, even if all your answers were incorrect. The purpose of the bonuses is to reward those who regularly attend class and keep up with the lecture material and homework assignments. For example, if the lowest total course score for a B− turned-out to be 80.00 while your average was 78.50, you will receive a B− if your bonus average is 1.50 or higher. Otherwise, if you failed to take the quizzes or your bonus average was 1.49 or lower, you will receive a C+. Therefore, unless there is a numerical error in your scores, there will be no basis to discuss a letter grade adjustment. I do not “round up”.

Student Responsibilities

1. You are responsible for all material (a) given in the homework problems, (b) discussed in class, (c) in the assigned reading, and (d) in the lab exercises.

2. You are responsible for all announcements made in class, whether you are present or not, and on the class website.

3. Read the assigned portions of the textbook before class.

4. Do all homework assignments.

5. Attend ALL laboratory sessions in your assigned laboratory section.

6. Know the University’s policies concerning withdrawals and incompletes.

7. Ask me if you do not understand anything. There is no dumb question.

Academic Honesty

Be aware of the University’s policy on academic honesty. See http://ovpi.uga.edu/academic-honesty. Anyone caught cheating on a test or exam will receive a failing grade for the course. Anyone found to be cheating on labs, LON-CAPA assignments, or quizzes will receive a zero for that assignment. A second incident will result in failure of the course. All suspected incidents of academic dishonesty will be reported to the Office of the Vice President for Instruction. Appearing before the Academic Honesty Panel is an unpleasant experience for everyone. Let’s not meet there.
<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Chapter</th>
<th>Reading</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T 8/19</td>
<td>1</td>
<td>1.1-1.8</td>
<td>Introduction - Science and Motion</td>
</tr>
<tr>
<td></td>
<td>H 8/21</td>
<td>2</td>
<td>2.1-2.4</td>
<td>Kinematics in 1D</td>
</tr>
<tr>
<td>2</td>
<td>T 8/26</td>
<td>2</td>
<td>2.5-2.7</td>
<td>Kinematics in 1D</td>
</tr>
<tr>
<td></td>
<td>H 8/28</td>
<td>3</td>
<td>3.1-3.5</td>
<td>Vectors</td>
</tr>
<tr>
<td>3</td>
<td>T 9/2</td>
<td>4</td>
<td>4.1-4.2</td>
<td>Kinematics in 2D</td>
</tr>
<tr>
<td></td>
<td>H 9/4</td>
<td>4</td>
<td>4.3-4.5</td>
<td>Kinematics in 2D</td>
</tr>
<tr>
<td>4</td>
<td>T 9/9</td>
<td>Review</td>
<td></td>
<td>Chapters 1-4</td>
</tr>
<tr>
<td>5</td>
<td>H 9/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T 9/16</td>
<td>5</td>
<td>5.1-5.6</td>
<td>Forces, Newton’s laws</td>
</tr>
<tr>
<td>7</td>
<td>H 9/18</td>
<td>5 and 6</td>
<td>5.7, 6.1, 3.6</td>
<td>Forces and Friction, Relative Velocity</td>
</tr>
<tr>
<td>8</td>
<td>T 9/23</td>
<td>6 and 12</td>
<td>6.2-6.4, 12.1-12.2</td>
<td>Strings, Springs, and Gravitation</td>
</tr>
<tr>
<td></td>
<td>H 9/25</td>
<td>6 and 7</td>
<td>6.5 and 7.1-7.2</td>
<td>Circular Motion and Work</td>
</tr>
<tr>
<td>9</td>
<td>T 9/30</td>
<td>7 and 8</td>
<td>7.3-7.4, 8.1-8.2</td>
<td>Kinetic and Potential Energy</td>
</tr>
<tr>
<td>10</td>
<td>H 10/2</td>
<td>8</td>
<td>8.3-8.4</td>
<td>Conservation of Energy</td>
</tr>
<tr>
<td>11</td>
<td>T 10/7</td>
<td>9</td>
<td>9.1-9.3</td>
<td>Linear momentum, Impulse</td>
</tr>
<tr>
<td></td>
<td>H 10/9</td>
<td>Review</td>
<td></td>
<td>Chapters 5-8, 12</td>
</tr>
<tr>
<td>12</td>
<td>T 10/14</td>
<td></td>
<td></td>
<td>Collisions, Center of Mass</td>
</tr>
<tr>
<td>13</td>
<td>H 10/16</td>
<td>TEST #2</td>
<td>9.4-9.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T 10/21</td>
<td>10</td>
<td>10.1-10.6</td>
<td>Rotational Kinematics</td>
</tr>
<tr>
<td>14</td>
<td>H 10/23</td>
<td>11</td>
<td>11.1-11.5</td>
<td>Rotational Dynamics (Withdrawal deadline)</td>
</tr>
<tr>
<td></td>
<td>T 10/28</td>
<td>11</td>
<td>11.6-11.8</td>
<td>Angular Momentum</td>
</tr>
<tr>
<td>15</td>
<td>H 10/30</td>
<td>11, 13</td>
<td>11.9, 13.1-13.2</td>
<td>Angular vectors, Oscillations</td>
</tr>
<tr>
<td>16</td>
<td>T 11/4</td>
<td>13</td>
<td>13.3-13.5</td>
<td>Oscillations</td>
</tr>
<tr>
<td></td>
<td>H 11/6</td>
<td>13</td>
<td>13.6, 8.5, 12.4</td>
<td>Oscillations, Potential Energy Diagrams</td>
</tr>
<tr>
<td>17</td>
<td>T 11/11</td>
<td>Review</td>
<td></td>
<td>Chapters 9-11,13</td>
</tr>
<tr>
<td>18</td>
<td>H 11/13</td>
<td>TEST #3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>T 11/18</td>
<td>14</td>
<td>14.1-14.6</td>
<td>Waves and Sound</td>
</tr>
<tr>
<td></td>
<td>H 11/20</td>
<td>14</td>
<td>14.6-14.9</td>
<td>Superposition of Waves</td>
</tr>
<tr>
<td>20</td>
<td>T 11/25</td>
<td>No class</td>
<td></td>
<td>Thanksgiving Break</td>
</tr>
<tr>
<td></td>
<td>H 11/27</td>
<td>No class</td>
<td></td>
<td>Thanksgiving Break</td>
</tr>
<tr>
<td>21</td>
<td>T 12/2</td>
<td>16</td>
<td>16.1-16.5</td>
<td>Temperature and Heat</td>
</tr>
<tr>
<td>22</td>
<td>H 12/4</td>
<td>Review</td>
<td></td>
<td>Final Review</td>
</tr>
<tr>
<td>23</td>
<td>T 12/9</td>
<td>No class</td>
<td></td>
<td>Friday class schedule</td>
</tr>
<tr>
<td>24</td>
<td>T 12/16</td>
<td>FINAL EXAM</td>
<td>Comprehensive</td>
<td>12:00-3:00pm or 3:30-6:30pm</td>
</tr>
</tbody>
</table>

PHY 1111 Class Schedule, Fall 2014, Tu(T)Th(H), Periods 3 & 5, Prof. Stancil