Mesoscopic phonon transmission through a nanowire-bulk contact

Chun-Min Chang and Michael R. Geller
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451, USA
(Received 23 September 2004; published 9 March 2005)

We calculate the frequency-dependent mesoscopic acoustic phonon transmission probability through the abrupt junction between a semi-infinite, one-dimensional cylindrical quantum wire and a three-dimensional bulk insulator, using a perturbative technique that is valid at low frequency. The system is described using elasticity theory, and traction-free boundary conditions are applied to all free surfaces. In the low-frequency limit the transmission probability vanishes as ω^2, with the low-frequency transport being dominated by the longitudinal channel.

In Sec. II we review the calculation of the long-wavelength vibrational modes of an infinitely long cylindrical elastic rod. The long wavelength limit of interest here is defined as $kb \ll 1$, where b is the radius of the cylinder

and k is the wave number. In Sec. III we show that in the long-wavelength limit, the bulk solid produces a hard-wall boundary condition on the nanowire. In Sec. IV we calculate the displacement field in the three-dimensional bulk solid given an applied traction to its surface, using what is essentially an elastic Green’s function method.\(^{13,16}\) The frequency-dependent transmission probabilities for each of the four gapless modes are calculated in Sec. V, and our conclusions are given in Sec. VI.

II. VIBRATIONAL MODES OF CYLINDRICAL WIRE

In this section, we will briefly review the elastic eigenmodes for an infinitely long cylindrical wave guide. In the long wavelength limit there are four branches, which include one torsional branch, one longitudinal branch, and two flexural branches.\(^{13}\) We assign a numerical subscript to represent each branch, with “1” denoting the torsional branch, “2” denoting the longitudinal branch, and “3” and “4” denoting the flexural branches. These four branches are orthogonal. Also, cylindrical coordinates are used below.

We assume an isotropic elastic continuum with transverse and longitudinal sound speeds

$$c_t = \sqrt{\frac{\mu}{\rho}} \quad \text{and} \quad c_l = \sqrt{\frac{\lambda + 2\mu}{\rho}},$$

(1)

where ρ is the mass density, and λ and μ are the Lamé constants.

A. Branch 1: torsional

The displacement field is given by

$$\mathbf{u}_1(\mathbf{r}, t) = r \, e^{i(kz - \omega t)} \mathbf{e}_\phi,$$

(2)

with dispersion relation

$$\omega^2 = \frac{\rho c_t^2}{2} k^2,$$

(3)

In the presence of an abrupt, nonadiabatic coupling between the nanowire and bulk reservoirs, phonons will scatter at the junctions and suppress the thermal conductance.\(^{9,12-14}\) Cross and Lifshitz\(^{13}\) have calculated the frequency-dependent acoustic phonon transmission probability T between a semi-infinite quantum wire of rectangular cross section and a thin plate with the same thickness as the wire, and find that $T \propto \omega^{1/2}$ in the low-frequency limit. In Ref. 14 a short nanowire, modeled as a harmonic spring, abruptly connected at both ends to three-dimensional bulk insulators was found to have $T \propto \omega^2$. These results suggest that such nanowires will eventually become thermal insulators at low temperatures, and the universal thermal conductance quantum limit will not be observed. However, such a crossover to insulating behavior has not yet been observed experimentally.

Understanding the scattering caused by nonadiabatic nanowire-bulk contacts will be essential for pushing phonon physics into the mesoscopic regime, as well as for the design and operation of thermal nanosensors such as calorimeters and bolometers. In this paper, we extend the previous work by calculating the mesoscopic acoustic phonon transmission probability through the abrupt junction between a semi-infinite, one-dimensional cylindrical quantum wire and a three-dimensional bulk insulator, using the low-frequency perturbative technique employed by Cross and Lifshitz.\(^{13}\) The nanowire and bulk insulators are described using isotropic elasticity theory, and traction-free boundary conditions are applied to all free surfaces. In the low-frequency limit the transmission probability is found to vanish as ω^2, with the low-frequency transport being dominated by the longitudinal channel.

In Sec. II we review the calculation of the long-wavelength vibrational modes of an infinitely long cylindrical elastic rod. The long wavelength limit of interest here is defined as $kb \ll 1$, where b is the radius of the cylinder and k is the wave number. In Sec. III we show that in the long-wavelength limit, the bulk solid produces a hard-wall boundary condition on the nanowire. In Sec. IV we calculate the displacement field in the three-dimensional bulk solid given an applied traction to its surface, using what is essentially an elastic Green’s function method.\(^{13,16}\) The frequency-dependent transmission probabilities for each of the four gapless modes are calculated in Sec. V, and our conclusions are given in Sec. VI.

I. INTRODUCTION

Electronic transport in a variety of mesoscopic systems has been successfully described by the theory of Landauer and Büttiker.\(^{1-7}\) In this scattering approach, each fully propagating channel in a wire contributes $2\pi e^2/h$ to the electrical conductance. Recently there have been experimental efforts to study phonons in the mesoscopic regime,\(^{8}\) and beautiful conductance. Recently there have been experimental efforts to study phonons in the mesoscopic regime,\(^{8}\) and beautiful conductance...
The stress tensor elements acting on a cross section of the rod are

\[\sigma_{1r} = \mu \left(\frac{\partial u_1}{\partial z} + \frac{\partial u_1}{\partial r} \right) = 0, \]

\[\sigma_{1\theta} = \mu \left(\frac{\partial u_1}{\partial \theta} + \frac{1}{r} \frac{\partial u_1}{\partial r} \right) = i \mu k e^{i(kz - \omega t)}, \]

\[\sigma_{1z} = \left[\lambda (\nabla \cdot u_1) + 2 \mu \frac{\partial u_1}{\partial z} \right] = 0. \]

B. Branch 2: longitudinal

The displacement field is

\[u_2(r,t) = [f_2(r)e_\theta + f_3(r)e_z] e^{i(kz - \omega t)}, \]

where

\[f_2(r) = -A_2 \alpha J_1(\alpha r) + B_2 k J_1(\beta r), \]

\[f_3(r) = A_3 i k J_0(\alpha r) - B_2 \beta J_0(\beta r). \]

\[J_n(r) \] is the Bessel function of nth order. \(\alpha \) and \(\beta \) are constants determined by the boundary conditions. Furthermore,

\[\alpha = \sqrt{\frac{\omega_2^2}{c_i^2} - k^2} \quad \text{and} \quad \beta = \sqrt{\frac{\omega_2^2}{c_i^2} - k^2}, \]

and

\[\frac{A_2}{B_2} = \frac{\beta^2 - k^2 J_1(\beta/b)}{2 i \alpha k J_1(\alpha b)}. \]

The relevant stresses are

\[\sigma_{2r} = \mu \left[ik f_2(r) + \frac{df_2(r)}{dr} \right] e^{i(kz - \omega t)}, \]

\[\sigma_{2\theta} = 0, \]

\[\sigma_{2z} = \left[\lambda \left(\frac{df_2(r)}{dr} + \frac{f_2(r)}{r} \right) + ik(\lambda + 2 \mu) f_2(r) \right] e^{i(kz - \omega t)}. \]

In the long wavelength \(kb \ll 1 \), limit, \(\omega_2 = c_0 k \),

\[\alpha = ik \sqrt{1 - \frac{c_0^2}{c_i^2}} \quad \text{and} \quad \beta = k \sqrt{\frac{c_0^2}{c_i^2} - 1}, \]

where \(c_0 \) is related to Young’s modulus of elasticity \(E \) by

\[c_0 = \sqrt{\frac{E}{\rho}} = c_i \sqrt{\frac{3c_i^2 - 4c_0^2}{c_i^2 - c_0^2}}. \]

To leading order,

\[u_2(r,t) = e_z e^{i(kz - \omega t)}, \]

and the stresses are

\[\sigma_{2r} = 0, \]

\[\sigma_{2\theta} = 0, \]

\[\sigma_{2z} = i \mu c_0^2 k e^{i(kz - \omega t)} = i \mu \left(\frac{3 - 4p^2}{1 - p^2} \right) k e^{i(kz - \omega t)}, \]

where \(p = c_i / c_1 \) is the ratio of the transverse to longitudinal sound speed.

C. Branch 3: x-polarized flexural

The displacement field is

\[u_3(r,t) = \left[g_z(r) \cos \theta \phi + g_\phi(r) \sin \theta \phi + g_\phi(r) \cos \theta \phi \right] e^{i(kz - \omega t)}, \]

where

\[g_z(r) = \frac{dJ_1(\alpha r)}{dr} + B_3 \frac{dJ_1(\beta r)}{dr} + C_3 J_1(\beta r), \]

\[g_\phi(r) = -\frac{J_1(\alpha r)}{r} - B_3 \frac{J_1(\beta r)}{r} - C_3 \frac{dJ_1(\beta r)}{dr}, \]

\[g_\phi(r) = i k J_1(\alpha r) - i B_3 \frac{\beta^2}{k} J_1(\beta r). \]

\(B_3 \) and \(C_3 \) are constants. The stresses are given by

\[\sigma_{3r} = \mu \left[ik g_z(r) + \frac{dg_z(r)}{dr} \right] \cos \theta e^{i(kz - \omega t)}, \]

\[\sigma_{3\phi} = \mu \left[ik g_\phi(r) - \frac{g_\phi(r)}{r} \right] \sin \theta e^{i(kz - \omega t)}, \]

\[\sigma_{3z} = \left[\lambda \frac{dg_z(r)}{dr} + \frac{g_z(r) + g_\phi(r)}{r} \right] \cos \theta e^{i(kz - \omega t)}, \]

\[+ i(\lambda + 2 \mu) k g_\phi(r) \cos \theta e^{i(kz - \omega t)}. \]

In the \(kb \ll 1 \) limit,

\[\omega_3 = \frac{c_0}{2} k b^2, \]

\[\alpha = ik \sqrt{1 - \left(\frac{c_0 b k}{2c_i} \right)^2}, \]

\[\beta = k \sqrt{1 - \left(\frac{c_0 b k}{2c_i} \right)^2}. \]

To leading order,

\[u_3(r,t) = (\cos \theta e_r - \sin \theta e_\theta + i k \lambda e_z) e^{i(kz - \omega t)}, \]

\[= (e_z - i k \lambda e_z) e^{i(kz - \omega t)}, \]
The rod bends in the \(xz\) plane.

D. Branch 4: \(y\)-polarized flexural

An independent flexural mode can be found by letting the rod bend in the \(y\) direction. In the long-wavelength limit,

\[
\mathbf{u}_i(r, t) = (e_y - ik_y e_y) e^{i(k_y - \omega t) t},
\]

and the stresses on the surface normal to \(z\) are

\[
\sigma_{4yz} = \frac{i\mu}{4} \left[\left(1 + \frac{c_0^2}{c_i^2}\right)(b^2 - x^2) - \left(3 - \frac{c_0^2}{c_i^2}\right)x^2 \right] k^3 y e^{i(k_x - \omega t)},
\]

\[
\sigma_{4xz} = -\frac{i\mu}{2} \left(\frac{c_0^2}{c_i^2} - 1\right) k^3 x y e^{i(k_x - \omega t)},
\]

\[
\sigma_{4zz} = \mu \left(\frac{c_0^2}{c_i^2} k^2 y \ e^{i(k_x - \omega t)}.\right)
\]

III. BOUNDARY CONDITIONS AT THE NANOWIRE-BULK INTERFACE

The essence of the perturbative method we use is as follows: In an abrupt junction geometry, the bulk solid presents a stiff boundary to the nanowire, so to zeroth order one calculates the vibrational modes of the wire assuming a zero-displacement boundary condition at the contact. The stress distributions associated with these vibrational modes is then calculated in the junction region. These zeroth-order vibrational modes, however, do not carry elastic energy because of the hard-wall boundary condition associated with the infinitely stiff bulk solid. Now one relaxes the hard-wall boundary condition, replacing it with the condition that elastic waves in the bulk are purely radiative, having outward moving components but no inward ones. The elastic energy radiated by the nanowire into the semi-infinite bulk solid is then computed using the actual elastic parameters of the bulk, and the ratio of incident to transmitted energy determines the transmission probability.

Thus, as explained, we will calculate the elastic stress on the surface of the three-dimensional bulk insulator, produced by the vibrating nanowire, by assuming that the bulk imposes a zero-displacement boundary condition on the nanowire. This is physically reasonable, and can be further justified by considering the bulk to be a thick wire with a radius \(B\) much larger than the nanowire radius \(b\).\(^{13}\) Assuming a sound wavelength larger than both \(b\) and \(B\), the conservation of linear and angular momentum lead the zero-displacement boundary condition in the limit \(B \gg b\).

We consider a semi-infinite cylindrical elastic nanowire of radius \(b\), lying along the \(z\) axis and connected at \(z=0\) to a thicker cylinder of radius \(B\). An incident elastic wave \(\mathbf{u}_i = u_i(r, \theta) e^{i(k_z - \omega t) t}\) propagates from the nanowire to thick cylinder. \(k\) is smaller than both \(b\) and \(B\) so both cylinders are still one dimensional, and \(i=1, 2, 3, 4\) denotes the branch. The scattering causes a reflected wave for \(z<0\) and a transmitted wave for \(z>0\). We can write the displacement field as

\[
\mathbf{u}_i(r, \theta) e^{i(k_z - \omega t) t} + R_{ij} \mathbf{u}_j(r, \theta) e^{i(k_z + \omega t) t} \quad \text{for} \quad z < 0,
\]

\[
T_{ij} \mathbf{u}_j(r, \theta) e^{i(k_z - \omega t) t} \quad \text{for} \quad z > 0.
\]

Here \(R_{ij}\) and \(T_{ij}\) are the reflection and transmission coefficients, which are matrices in the channel indices.

The continuity of the displacement field, combined with the orthogonality of the vibrational eigenmodes, leads to

\[
\delta_{ij} + R_{ij} = T_{ij}.
\]

In the Appendix we show that in the \(B \gg b\) limit, conservation of linear and angular momentum leads to

\[
R_{ij} \rightarrow -\delta_{ij} \quad \text{and} \quad T_{ij} \rightarrow 0,
\]

which means that elastic waves are flipped upon reflection, and no interbranch scattering occurs. This result is analogous to that obtained by Cross and Lifshitz in their thin-plate geometry.\(^{13}\)

Linear combinations of the vibrational eigenfunctions of Sec. II can be used to satisfy the boundary conditions of Eq. (26). These displacement fields produce the following stress distributions at the \(z=0\) interface: For the torsional mode we obtain

\[
\sigma_{\theta z} = \begin{cases}
2i\mu kr^2 e^{-i\omega t} & \text{for } r < b, \\
0 & \text{for } r > b.
\end{cases}
\]

For the longitudinal mode,

\[
\sigma_{zz} = \begin{cases}
2i\mu \frac{c_0^2}{c_i^2} kr e^{-i\omega t} & \text{for } r < b, \\
0 & \text{for } r > b.
\end{cases}
\]

And for the \(x\)-polarized flexural mode, we find

\[
\sigma_{xz} = \sigma_{yz} = \sigma_{zz} = 0 \quad \text{for } r > b,
\]

\[
\sigma_{xz} = \frac{i\mu}{2} \left[\left(1 + \frac{c_0^2}{c_i^2}\right)(b^2 - x^2) - \left(3 - \frac{c_0^2}{c_i^2}\right)x^2 \right] k^3 e^{-i\omega t},
\]

\[
\sigma_{yz} = i\mu \left(1 - \frac{c_0^2}{c_i^2}\right) k^3 x y e^{-i\omega t},
\]

\[
\sigma_{zz} = 0,
\]

for \(r < b\). The stress distribution from the \(y\)-polarized flexural mode has the same form as (29) and (30) after exchanging \(x\) and \(y\).
IV. 3D ELASTIC RESPONSE FUNCTION

Next we calculate the displacement field in the three-dimensional solid given the applied stress of Sec. III to its surface at $z=0$. For $r < b$, this is the stress distribution produced by the nanowire, and for $r > b$ it is the stress imposed by the traction-free boundary condition. The method we use here, which is essentially a Green’s function method, is well known in elasticity theory.13,16

To find the displacement field in the bulk solid given the boundary conditions described above, a scalar potential ϕ and a vector potential \mathbf{H} are introduced according to

$$\mathbf{u} = \nabla \phi + \nabla \times \mathbf{H}. \quad (31)$$

The wave equations for the potential fields are

$$\left(\frac{\partial^2}{\partial t^2} - c_i^2 \nabla^2 \right) \phi = 0, \quad \left(\frac{\partial^2}{\partial t^2} - c_i^2 \nabla^2 \right) \mathbf{H} = 0. \quad (32)$$

They can be written as

$$\phi(x,y,z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk_1 dk_2 \frac{e^{-i(k_1 x + k_2 y)}}{k_1^2 + k_2^2 + k_{z3}^2} \text{d}k_3, \quad (33)$$

and

$$\mathbf{H}(x,y,z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk_1 dk_2 \frac{\mathbf{h}(k_1,k_2) e^{-i(k_1 x + k_2 y)}}{k_1^2 + k_2^2 + k_{z3}^2} \text{d}k_3, \quad (34)$$

where

$$k_{z3} = \sqrt{\frac{\omega^2}{c_i^2} - k_1^2 - k_2^2}. \quad (35)$$

and

$$k_{z3} = \sqrt{\frac{\omega^2}{c_i^2} - k_1^2 - k_2^2}. \quad (36)$$

Here f and h are the Fourier transforms of the potential fields ϕ and H at $z=0$.

Now, we can use Eq. (31) and choose the transverse “gauge” $\nabla \cdot \mathbf{H} = 0$ to express the components of the displacement vector by the inverse Fourier transform F^{-1},

$$u_x(x, y, z) = -i F^{-1} \left[f(k_1, k_2) e^{i(k_1 x + k_2 y)} + g_x(k_1, k_2) e^{i k_{z3} z} \right], \quad (37)$$

$$u_y(x, y, z) = -i F^{-1} \left[f(k_1, k_2) e^{i(k_1 x + k_2 y)} + g_y(k_1, k_2) e^{i k_{z3} z} \right], \quad (37)$$

$$u_z(x, y, z) = i F^{-1} \left(k_{z3} f(k_1, k_2) e^{i k_{z3} z} - \frac{k_1 g_x(k_1, k_2) + k_2 g_y(k_1, k_2)}{k_{z3}} e^{i k_{z3} z} \right), \quad (37)$$

where

$$g_x(k_1, k_2) = k_2 h_x(k_1, k_2) + k_{z3} h_y(k_1, k_2), \quad (38)$$

$$g_y(k_1, k_2) = -k_1 h_x(k_1, k_2) - k_{z3} h_y(k_1, k_2). \quad (39)$$

The stress at the boundary $z=0$ can also be expressed in terms of the inverse Fourier transforms, as

$$\sigma_z = \mu \left(\frac{\partial u_z}{\partial z} + \frac{\partial u_x}{\partial x} \right) = \mu F^{-1} \left(2k_{z3} f(k_1, k_2) + \frac{k_1 g_x(k_1, k_2) + k_2 g_y(k_1, k_2)}{k_{z3}} \right), \quad (40)$$

$$\sigma_y = \mu \left(\frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} \right) = \mu F^{-1} \left(2k_{z3} f(k_1, k_2) + \frac{k_1 g_x(k_1, k_2) + k_2 g_y(k_1, k_2)}{k_{z3}} \right). \quad (41)$$

$$\sigma_z = \left(\lambda (\nabla \cdot \mathbf{u}) + 2\mu \frac{\partial u_z}{\partial z} \right) = \mu F^{-1} \left[(k_1^2 + k_2^2 - k_{z3}^2) f(k_1, k_2) \right.$$

$$+ k_1 g_x(k_1, k_2) + k_2 g_y(k_1, k_2)]. \quad (42)$$

By giving the boundary values of σ_z, σ_y, and σ_z, we can find f, g_x, and g_y from the equations above. If at least one of these stresses is nonzero, we obtain

$$f = \frac{1}{\eta_0(k_1, k_2)} \left[(k_1^2 + k_2^2 - k_{z3}^2) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) + k_{z3} k_1 \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) \right.$$

$$+ k_1 g_x(k_1, k_2) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right)], \quad (43)$$

$$g_x = \frac{1}{\eta_0(k_1, k_2)} \left[2k_{z3} k_1 k_2 \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) + \left(\frac{\eta_1(k_1, k_2)}{k_{z3}} - 2k_{z3} k_1 \right) \right.$$

$$\times \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) - \left(\frac{\eta_2(k_1, k_2)}{k_{z3}} + 2k_{z3} k_1 \right) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) \bigg], \quad (44)$$

and

$$g_y = \frac{1}{\eta_0(k_1, k_2)} \left[2k_{z3} k_1 k_2 \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) - \left(\frac{\eta_1(k_1, k_2)}{k_{z3}} + 2k_{z3} k_1 \right) \right.$$

$$\times \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) + \left(\frac{\eta_2(k_1, k_2)}{k_{z3}} - 2k_{z3} k_1 \right) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) \bigg]. \quad (45)$$

Here

$$\eta_1(k_1, k_2) = k_2^4 + k_1^2 k_2^2 + k_1^2 k_{z3}^2 + 2k_1 k_2^2 (2k_{z3} - k_{z3}^2) + k_{z3}^4, \quad (46)$$

$$\eta_2(k_1, k_2) = k_1 k_2^2 k_3 (k_2^2 + k_2^2 + k_3 (4k_{z3} - 3k_{z3}^2)], \quad (47)$$

$$\eta_0(k_1, k_2) = \eta_1(k_1, k_2) + \frac{k_1}{k_2} \eta_2(k_1, k_2). \quad (48)$$

Therefore, from Eq. (37), we can find the displacement vector at $z=0$ in terms of the boundary stresses,

$$u_z(x, y, z) = \mathcal{F}^{-1} \left[\frac{-i}{k_{z3} \eta_0(k_1, k_2)} \left[k_1 \eta_1(k_1, k_2) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) \right.$$

$$+ \eta_1(k_1, k_2) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) - \eta_2(k_1, k_2) \mathcal{F} \left(\frac{\sigma_z}{\mu} \right) \bigg]. \quad (49)$$
$u_{y_{z=0}} = F^{-1}\left\{ \frac{-i}{k_{13} \eta_0(k_1,k_2)} \left[k_2 k_{13} \eta_3(k_1,k_2) F\left(\frac{\sigma_{zz}}{\mu} \right) \right] \right.
+ \eta_1(k_1,k_2) F\left(\frac{\sigma_{zz}}{\mu} \right) - \eta_2(k_1,k_2) F\left(\frac{\sigma_{zz}}{\mu} \right) \left. \right\}, \quad (50)

$u_{z_{z=0}} = F^{-1}\left\{ \frac{-i}{\eta_0(k_1,k_2)} \left[\frac{\omega^2}{c_i^2} k_{13} F\left(\frac{\sigma_{zz}}{\mu} \right) - \eta_3(k_1,k_2) \right] \times \left[k_1 F\left(\frac{\sigma_{zz}}{\mu} \right) + k_2 F\left(\frac{\sigma_{zz}}{\mu} \right) \right] \right\}, \quad (51)

with

$\eta_3(k_1,k_2) = k_1^2 + k_2^2 + k_{13}(2k_{13} - k_{13}). \quad (52)$

\section*{V. ENERGY TRANSMISSION FROM NANOWIRE TO BULK}

Now we are ready to calculate the transmission probability, defined as the ratio of transmitted to incident elastic energy flux, for each of the four gapless branches. The energy current I can be expressed as \cite{17}

$I = \left\{ \int_{x} dx dy \left(\frac{\partial u_x}{\partial t} \sigma_{xx} + \frac{\partial u_y}{\partial t} \sigma_{xy} + \frac{\partial u_z}{\partial t} \sigma_{zz} \right) \right\}_{z=0}, \quad (53)$

where $\left\langle \cdot \cdot \cdot \right\rangle$ represents a time average and $\int_{x} dx dy$ is the surface integral over the $z=0$ cross section of the wire. In conventional complex notation for waves, this becomes

$I = -\frac{\omega}{2} \text{Im} \int_{x} dx dy (u_x \sigma_{xx}^* + u_y \sigma_{xy}^* + u_z \sigma_{zz}^*)_{z=0}. \quad (54)$

We will calculate the energy current for the different branches separately.

\subsection*{A. Torsional branch}

The stress distribution (27) in rectangular coordinates is, for $\sqrt{x^2+y^2} < b$,

$\sigma_{xx} = 0,$

$\sigma_{zz} = -2i \mu k y e^{-iat},$

$\sigma_{yz} = 2i \mu k x e^{-iat}, \quad (55)$

and zero for $\sqrt{x^2+y^2} \geq b$. Using Eqs. (49)–(51) we obtain

$I = -\frac{\omega}{2} \text{Im} \int_{x} dx dy (u_x \sigma_{xx}^* + u_y \sigma_{xy}^* + u_z \sigma_{zz}^*)_{z=0}$

$= \frac{\omega}{4\pi} \text{Re} \int_{x} dx dy e^{-(k_1 x + k_2 y)}$

$\times \left[\eta_1(k_1,k_2) F\left(\frac{\sigma_{zz}}{\mu} \right) - \eta_2(k_1,k_2) F\left(\frac{\sigma_{zz}}{\mu} \right) \right]. \quad (56)$

Expanding the Fourier transforms $F[x]$ and $F[y]$ for small $k b$, and keeping only the leading terms,

$\frac{1}{2\pi} \int_{x} xe^{-i(k_1 x + k_2 y)} dx dy = -\frac{ik_1 b^4}{8}, \quad (58)$

$\frac{1}{2\pi} \int_{y} ye^{-i(k_1 x + k_2 y)} dy dy = -\frac{ik_2 b^4}{8}, \quad (59)$

we have

$I = \frac{\mu b^8 \omega}{32} \text{Re} \int_{x} dx dy \left[k_2^2 \left(\eta_1(k_1,k_2) + \frac{k_1}{k_2} \eta_2(k_1,k_2) \right) + k_1^2 \left(\eta_2(k_2,k_1) + \frac{k_1}{k_2} \eta_1(k_2,k_1) \right) \right] \quad (60)$

$= \frac{\pi \mu b^8 k^5 \omega}{24}. \quad (62)$

By normalizing I with the energy current $(\pi/4)\mu b^4 k \omega$ of the incident torsional wave, we obtain the transmission probability

$T = \frac{1}{\rho_0} b^4 k^4. \quad (63)$

\subsection*{B. Longitudinal branch}

Using Eq. (28),

$I = -\frac{\omega}{2} \text{Im} \int_{x} dx dy \left(\frac{\partial u_z}{\partial t} \sigma_{zz} \right)_{z=0}. \quad (64)$

Then to leading order in kb,

$I = \frac{\omega}{8\pi^2 \mu} \int_{0}^{b} dr \int_{0}^{2\pi} d\theta \sigma_{zz} \left(\frac{\omega^2 k_{13}}{c_i \eta_0(k_1,k_2)} \right) \text{Re} \int_{0}^{b} dk dk_2 \frac{\omega^2 k_{13}}{c_i \eta_0(k_1,k_2)} \quad (65)$

$= \frac{\mu \left(c_0^2 / c_i \right)^2 b^2 k \omega}{2c_i^2} \text{Re} \int_{x} dx dy \frac{\omega k_{13}}{c_i \eta_0(k_1,k_2)} \left[c_i \eta_0(k_1,k_2) \right]. \quad (66)$

Normalizing by the power $(\pi/2)\mu(c_0^2/c_i)^2 b^2 k \omega$ carried by the incident wave leads to

$T(k) = \frac{c_0^2}{\pi c_i^2} b^2 k \omega \text{Re} \int_{x} dx dy \frac{\omega k_{13}}{c_i \eta_0(k_1,k_2)} \quad (67)$

where
where we have used Eqs. (20) and (21), the transmission probability is found to be

\[T = \frac{1}{8 \pi c_t} \frac{c_0^2}{b^4 k^3} \omega \text{Re} \int dk_1 dk_2 c_t \frac{\eta_1(k_1,k_2)}{\omega k_{13} \eta_0(k_1,k_2)} \]

(74)

\[= t_f b^5 k^5 \]

(75)

where

\[t_f = \frac{c_0^2}{16 \pi c_t^3} \text{Re} \int dk_1 dk_2 c_t \frac{\eta_1(k_1,k_2)}{\omega k_{13} \eta_0(k_1,k_2)} \]

(76)

Using \(p = 0.694 \) for Si, the transmission probability becomes

\[T = 0.268 b^5 k^5 \]

(77)

Because of the cylindrical symmetry, the \(y \)-polarized flexural branch has the same transmission probability as the \(x \)-polarized branch.

VI. CONCLUSIONS

On the left side of Table I we summarize the transmission probability results calculated above, as well as the low-frequency dispersion relations of the four gapless modes. For comparison with the results of Cross and Lifshitz\(^{13}\) for a rectangular wire connected to a thin plate, we reproduce their results on the right-hand side of this table. In each case there are four gapless acoustic modes: one torsional, one longitudinal (or compressional) and two flexural bending modes. Also, the form of the dispersion relations are the same for both wires. For all branches the transmission probability to a three-dimensional bulk solid has a higher-order frequency dependence. This is at least partially a consequence of the higher vibrational density of states in the three-dimensional system as compared to a plate: For the longitudinal and \(x \)-polarized flexural branches, \(T \) is one order higher in \(\omega \), consistent with the density of states enhancement.\(^{18}\)

The phonon transmission probabilities can be used to calculate the mesoscopic thermal conductance between an equilibrated wire and bulk. According to the thermal Landauer formula,\(^{12,17,19}\) a total transmission probability \(T(\omega) \) varying at low frequency as \(\omega^7 \) will lead to a low-temperature thermal conductance varying with temperature as \(G_{\text{th}} \propto T^8 \). In our case, \(T(\omega) \) is a sum of the \(T \) for each channel. The thermal conductance between an equilibrated cylindrical wire nonadiabatically coupled to a bulk solid should therefore vanish with temperature as \(T^5 \).

Finally we comment on the applicability of our results to nanoscale phonon experiments, which do not consider infinitely long wires and perfectly sharp corners. For our theory to be valid, the wire must be longer than the sound wavelength, and the characteristic radii of curvature at the junction must be much smaller than this wavelength. Therefore, because of the first condition, our results will become invalid in the extreme low-temperature limit, and the conductance will cross over from our predicted \(T^5 \) scaling to some other behavior.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under CAREER Grant No. DMR-0093217. Acknowledgment is also made to the Donors of the American Chemical Society Petroleum Research Fund, for partial support of this research.

APPENDIX: MOMENTUM CONSERVATION AND HARD-WALL BOUNDARY CONDITION

Here we use linear and angular momentum conservation to derive Eq. (26) in the \(B \gg b \) limit. First we equate the
TABLE I. (Left) Dispersion relations $\omega(k)$ of the low-frequency vibrational modes in a cylindrical nanowire, and transmission probabilities T through the junction with a three-dimensional bulk insulator, as a function of both k and ω. t_1 and t_2 are constants defined in Eqs. (68) and (76). In the low-frequency limit the total transmission probability vanishes as ω^2, the transport being dominated by the longitudinal channel. (Right) Same quantities for a rectangular wire connected to a thin plate, reproduced from Ref. 13. Here I_1 and I_2 are Poisson-ratio-dependent numbers.

<table>
<thead>
<tr>
<th>Branch</th>
<th>Cylindrical nanowire (radius b)</th>
<th>Rectangular nanowire (width b, thickness d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\rightarrow semi-infinite space (3D solid)</td>
<td>\rightarrow thin plate (2D plate of thickness d)</td>
</tr>
<tr>
<td></td>
<td>$\omega(k)$</td>
<td>$T(k)$</td>
</tr>
<tr>
<td>Torsional</td>
<td>c_k</td>
<td>$\frac{1}{b}(bk)^4$</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>c_0k</td>
<td>$t_f(bk)^2$</td>
</tr>
<tr>
<td>Flexural (x-direction bending)</td>
<td>$\frac{1}{2}c_0b^2k^2$</td>
<td>$t_f(bk)^5$</td>
</tr>
<tr>
<td>Flexural (y-direction bending)</td>
<td>same as x direction</td>
<td></td>
</tr>
</tbody>
</table>

Equating these torques, we have

$$F_z = \int rdrd\theta \sigma_{zz}$$

(A7)

which gives

$$b^2(\delta_{1z} - R_{1z}) = B^2 T_{1z},$$

(A9)

since only the longitudinal mode has a nonzero F_z. Then

$$R_{1z} = T_{1z} = 0, \quad i \neq 2,$$

(A10)

$$R_{2z} = B^2 - b^2 \rightarrow -1,$$

(A11)

$$T_{2z} = \frac{2b^2}{B^2 + b^2} \rightarrow 0,$$

(A12)

for $B/b \rightarrow \infty$.

By further considering the conservation of momentum in the x and y directions, it is not difficult to derive the result quoted in Eq. (26).

6M. Büttiker, in Semiconductors and Semimetals, edited by M.
Reed (Academic, San Diego, 1992), Vol. 35.
11 Adiabaticity was only marginally satisfied at the lowest temperatures reached in the experiment of Ref. 10.

18 For the other two branches, the motion of the displacement field in the thin plate is normal to the surface of the plate, and it is not clear whether one can make such a comparison.