"The whole of science is nothing more than a refinement of everyday thinking."
Albert Einstein, 1936

PHYSICS 1111
SYLLABUS - SUMMER 2008
Professor J.-P. Caillault

Professor Information:
Office: 237 Physics
Office Hours: Tuesday and Thursday, 9:30-10:30 AM (and by appointment)
Phone: 542-2883
E-Mail: jpc@physast.uga.edu

Course Information:
Class Day/Time: MTWHF 10:30-11:30 AM
Textbook: Physics, Volume I, 3rd edition, by James S. Walker
Lab Manual: Experiments for Introductory Physics Course, 5th edition,
by Wood & Lewis
Website: www.physast.uga.edu/~jpc/phys1111.html

General comments about the course:

PHYS 1111 is a 4-credit course. You have been assigned to a laboratory section that
meets twice a week for two hours. The laboratory is required and no course grade will be
assigned until the lab requirement is completed. Please see the lab syllabus for much
more information.

The course website will contain updated information and announcements about the
course, as well as the syllabus, and homework problem and exam solutions.

You are expected to have a working knowledge of algebra and trigonometry; calculus
will not be used in this course.

In addition to the textbook and the lab manual, you should also have a simple scientific
calculator that permits work with scientific notation, trig functions and square roots.
Programmable calculators, PDAs, and cell phones will not be permitted in class or during
examinations.

Homework: Problems will be assigned for each Chapter. The homework will not be
collected nor graded. However, you are strongly encouraged to try to solve all of the
problems on your own before consulting the solutions (which will be made available on
the course website). Since your exams will consist almost exclusively of problems like
those found in the homework assignments, the importance of the homework problems
cannot be emphasized strongly enough.
Help Sessions: The Department of Physics and Astronomy offers free help sessions every Tuesday and Wednesday evening from 6:30-7:45 in Room 221.

Exams: There will be three in-class exams and a final, cumulative exam. There are no make-up exams; if you do not take an exam, you get a zero. However, the grade of your final exam may be used to replace your lowest in-class exam score.

Grades: Your *numerical grade* will be calculated as follows:

\[
\text{Lab} = 15\%, \quad \text{Final exam} = 35\%, \quad \text{Three in-class exams} = 50\%.
\]

(Keep in mind that since your final exam may replace one of your in-class exams this means that your final exam could be worth slightly more than 50% of your course grade.)

Your *letter grade* will be assigned as follows:

\[
\begin{align*}
93 & \leq A \\
90 & \leq A- < 93 \\
87 & \leq B+ < 90 \\
83 & \leq B < 87 \\
80 & \leq B- < 83 \\
77 & \leq C+ < 80 \\
73 & \leq C < 77 \\
70 & \leq C- < 73 \\
60 & \leq D < 70 \\
F & < 60
\end{align*}
\]

There will be no exceptions to these rules.

Withdrawals: If you withdraw after the withdrawal date, then you must receive a grade of WF. If you withdraw prior to the withdrawal date, then you may receive either a W or a WF, depending on your standing in the class at the time of your withdrawal. There is a great demand for seats in this class, so if you choose to stay in the class you must put in a reasonable effort.

Letters of recommendation: I will only take requests for letters of recommendation from students who have made an A or a B in the course and only after the course has been completed.

Academic Honesty: The University's Academic Honesty Policy (A Culture of Honesty) is strictly adhered to. Make sure you know and understand the policy.
Tentative Class Schedule:

<table>
<thead>
<tr>
<th>Chap.</th>
<th>Date</th>
<th>Topic</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>June 5</td>
<td>Introduction</td>
<td>9, 15, 29, 35, 43</td>
</tr>
<tr>
<td>2</td>
<td>June 6, 9</td>
<td>1-D Kinematics</td>
<td>5, 17, 27, 35, 43, 53, 77, 95</td>
</tr>
<tr>
<td>3</td>
<td>June 10</td>
<td>Vectors</td>
<td>13, 19, 29, 31, 43, 55</td>
</tr>
<tr>
<td>4</td>
<td>June 11-13</td>
<td>2-D Kinematics</td>
<td>3, 11, 21, 23, 37, 43, 45, 53</td>
</tr>
</tbody>
</table>

Monday, June 16
Optional Review

<table>
<thead>
<tr>
<th>EXAM 1</th>
<th>Tuesday, June 17</th>
<th>Chapters 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>June 16, 18-19</td>
<td>Newton’s Laws</td>
</tr>
<tr>
<td>6</td>
<td>June 20, 23</td>
<td>Applications</td>
</tr>
<tr>
<td>7</td>
<td>June 24</td>
<td>Work & KE</td>
</tr>
<tr>
<td>8</td>
<td>June 25-26</td>
<td>Potential Energy</td>
</tr>
<tr>
<td>9</td>
<td>June 27, 30</td>
<td>Momentum</td>
</tr>
</tbody>
</table>

Monday, June 30
Optional Review

<table>
<thead>
<tr>
<th>EXAM 2</th>
<th>Tuesday, July 1</th>
<th>Chapters 5-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>July 2-3</td>
<td>Rotational kinematics</td>
</tr>
<tr>
<td>11</td>
<td>July 7-8</td>
<td>Rotational dynamics</td>
</tr>
<tr>
<td>12</td>
<td>July 9-10</td>
<td>Gravity</td>
</tr>
<tr>
<td>13</td>
<td>July 11, 14-15</td>
<td>Oscillations</td>
</tr>
</tbody>
</table>

Tuesday, July 15
Optional Review

<table>
<thead>
<tr>
<th>EXAM 3</th>
<th>Wednesday, July 16</th>
<th>Chapters 10-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>July 17-18</td>
<td>Waves & Sound</td>
</tr>
<tr>
<td>16</td>
<td>July 21-22</td>
<td>Temperature & Heat</td>
</tr>
<tr>
<td>17</td>
<td>July 23-24</td>
<td>Phase changes</td>
</tr>
<tr>
<td>18</td>
<td>July 25, 28-29</td>
<td>Laws of Thermo.</td>
</tr>
</tbody>
</table>

Tuesday, July 29
Optional Review

<table>
<thead>
<tr>
<th>FINAL</th>
<th>Wednesday, July 30 (Noon -3:00 PM)</th>
<th>Chapters 1-14, 16-18</th>
</tr>
</thead>
</table>