Radiative transfer & molecular data for far-infrared astrophysics

Floris van der Tak

Proc IAU symp 228 (2011); astro-ph 1107.3368
Goals of radiative transfer calculations

- Dust continuum: estimate mass
 - input: temperature (assumed or calculated from L)
 - dust opacity parameter: e.g. Shirley et al 2011

- Line shape: kinematics
 - tools: line profiles, channel maps, P-V diagrams ..

- Line ratio: physical conditions
 - excitation model: thermal / statistical equilibrium
 - radiative & collisional contributions

- Line intensity: molecular column density
 - alternative mass estimate (especially CO)
 - need physical conditions first
 - compare abundance with chemical model: age, ζ_{CR} ..
Radiative transfer: limitations

- Resolution mismatch
 - emission vs absorption

- Unresolved substructure
 - clumps

- Incomplete coverage
 - spatially
 - energy levels

- Missing molecular data
 - spectroscopy
 - collisions
Basic radiative transfer: single-\(T_{\text{ex}} \) ("LTE")

- Estimate excitation temperature & column density
 - straightforward, only need spectroscopic data
 - assume Boltzmann distribution (HIFI can test this!)
 - full-spectrum version: line survey (e.g., Crockett / Neill)
Correction for optical depth & source size

- SMA observations
 - CH$_3$CN 18$_K$-17$_K$ band
 - dense clumps in Orion-KL
- Detect 9+3 lines in 5 clumps
 - 3 show 2 V-components
 - assume single size, T
 - fit N, T, τ, size

Goldsmith & Langer 1999; Wang et al 2010
Semi-advanced RT: Statistical equilibrium

- Uniform medium, constant level populations
 - global (not detailed) balance
 - radiative & collisional processes
 - breaks down e.g. for reactive species (CH$^+$, OH$^+$)
- Treat line opacity with LVG (?) or escape probability method
 - estimate T_{kin}, $n(\text{H}_2)$ & $N(\text{mol})$ for $\tau < \sim 100$
 - need collision data
Example: Molecular line ratios

- RADEX program: Van der Tak et al 2007
 - input: molecular spectroscopic & collision data
 - calculate line ratios as function of n & T
 - CS often probes n, NH$_3$ & H$_2$CO probe T

JCMT observations of H$_2$CO in W49A: Nagy et al 2012
Advanced RT: Non-local methods

- Excitation and radiation field mutually dependent
 - solve statistical equilibrium locally
 - shoot rays / propagate photon packages through model
 - iterate toward solution
- Common assumption: spherical / cylinder symmetry
 - many-level problem: slow convergence
 - and uncertain convergence
- Methods: iteration / Monte Carlo / multi-zone esc. prob.
 - test / constrain physical / chemical model
 - many parameters: need detailed observations
Example 1D: High mass protostar

- Detect 14 (isotopic) H$_2$O lines
 - envelope / outflow / foreground
 - physical structure from continuum
 - Ratran modeling of lines
- Kinematics
 - turbulence increasing outward
 - infall speed increasing outward (?)
 - high accretion rate
- Chemistry
 - outer envelope: most H$_2$O frozen out
 - inner envelope: all O in H$_2$O

Herpin et al 2012
Example full radiative transfer calculation (2D)

• **SMA spectral images**
 • CO, 13CO, C18O lines
 • protoplanetary disk IM Lup

• **Test two models to uv data**
 • old model: small emission
 • need to extend the disk
 • density drop at 400 AU

RATRAN program

Hogerheijde & van der Tak 2000; Panič et al 2009
Example full radiative transfer calculation (3D)

- **Galaxy merger at** $z=3.26$
 - SPH simulation (N=2M) (Sommer-Larsen)
 - CO line profile and map

LIME code: Brinch & Hogerheijde 2010
Molecular input data

- **Spectroscopy**: >500 entries in JPL/CDMS catalogs
 - energy levels, statistical weights
 - line frequencies, Einstein A coefficients
 - many species / isotopes / vibrational states
 - **Most data at low frequencies:**
 - high frequency predictions uncertain / unavailable
 - especially HIFI above 1 THz

- **Collisions**: >32 entries in LAMDA/BASECOL catalogs
 - only most common molecules: scalings like H_2O to H_2S
 - limited isotope coverage: effect neglected (C^{34}S vs HDO)
 - limited vibrational excitation: neglected / LTE assumed
 - limited state / energy coverage: extrapolation
 - sometimes He as proxy for H_2
Collision calculations: status

- Early work (<2000, Green et al):
 - closed shell molecules (CO, CS, ...)
 - He as collision partner
 - simplified PES

- More resources (both CPU and €) recently:
 - collision partner H_2 (rates $\sim 3\times$ larger)
 - accurate PES, dynamics at close coupling level
 - open shell molecules (CN)

- But: >170 molecules known in space, have CRC for ~ 30
 - detection rate \approx calculation rate (few/yr)
 - gap widening, convergence unlikely
Recent collision calculations

- **HCN, HNC – He**: Sarrasin, Dumouchel et al 2010
- **CH$_3$OH – He, H$_2$**: Rabli & Flower 2010, 2011 (incl torsion)
- **H$_2$O– H$_2$**: Dubernet, Daniel et al 2009 – 2011 (complete!)
- **HDO– H$_2$**: Wiesenfeld et al 2011
- **SO$_2$ – H$_2$**: Cernicharo et al 2011
- **HF – H$_2$**: Guillon & Stoecklin 2011
- **C$_2$H – He**: Spielfiedel et al 2012
- **HCl – He**: Lanza & Lique 2012
- **HCN – H$_2$**: Ben Abdallah et al 2012 (incl hyperfine)
- **CN – H$_2$**: Kalugina et al 2012 (incl hyperfine)

Expensive calculations: first PES, then dynamics

\approx1 man-year per molecule (isotopes faster)
only a few specialists can do this
A well-studied case: H_2O

- Quantum rates now available for wide T-range
 - 45 rotational levels = up to bending mode
 - ortho & para H_2 and H_2O
- Pre-2011 work often uses quasi-classical rates
 - usually OK within factor of 2
 - low density, low abundance: up to factor of 3

F. Daniel et al 2012
A rare case: experimental verification

- Pressure broadening coefficient
 - same PES as for CRCs
 - can be measured in lab
- Good agreement at $T > 80$ K
 - verifies PES
 - o/p ≈ 3 (black)
- Sharp drop at lower T
 - impact approximation?
 - ortho-para conversion!
 - T(ice) < 40 K
 - also in ISM?

Drouin & Wiesenfeld 2012; also s2s by Yang et al 2012
Hyperfine selective collisions: CN and HCN

- Non-zero nuclear spin causes “hyperfine” splitting
 - most common cases: ^{14}N and ^2D
 - ratios often assumed in LTE ... is that true?
- Consider 3 sets of collision rates:
 - close coupling (solid)
 - IOS (dashed)
 - statistical (dotted)
- Assumption fine for $\tau < 10$
 - else underestimate τ by $\sim 2x$
 - ratios \simstatistical, not LTE
 - example: $N(\text{HCN}) = 10^{15} \text{ cm}^{-2}$
Future developments

- **Automated data fitters**
 - crucial for large data streams
 - still limited to level-2 RT ...

- **Coupling of gas and dust RT**
 - thermal balance + chemistry
 - making model takes ~1 yr ...

- **Merging / streamlining of databases**
 - spectroscopy: merged into Splatalogue
 - ongoing effort = VAMDC (careful: updates / credits)

- **Collision data for other molecules / more (IR) lines / high \(E,T \)**
 - CH, p-H\(_2\)CO, NH\(_3\) on o-H\(_2\) (incl hyperfine), e\(^-\) ... organics ...