I. GENERAL INFORMATION

- Primary method of communication: during office hours; email through: phys1112wmd@physast.uga.edu
- Text: James S. Walker, Physics, Volume II 4th edition (Black Cover, 2009). (3rd edition (Blue Cover, 2007) is fine, but you will be responsible for knowing about any changes in content.) The bookstore describes the text as: Physics (Vol 2)(w/MasteringPhysics setext VP Acc) Edition: N/A. Make sure you get a copy that says: w/MasteringPhysics.
- Mastering Physics: To register use Course Code: MPDENNIS43257 – You will need to enter your 81X number. Enter 9 digits only – do not enter the last digit.
- You will also need a clicker for this course. Pick only 1 of the following 2 choices.
 - Turning Point Cloud (1 Year Access Code) Edition: N/A
 - QT Response Device + 5 Year License Edition: N/A

II. ACADEMIC HONESTY

- The University of Georgia has a comprehensive policy on academic honesty, described in a document entitled “A Culture of Honesty.” The document is available through the Office of the Vice President for Instruction or online at https://ovpi.uga.edu/academic-honesty.
- The policy covers all academic work. As a UGA student, you are responsible for knowing and understanding this policy.
- If you have any question about the appropriateness of your actions or your work, you are obliged to ask me for clarification.

III. IN-CLASS RULES

- No laptops, pagers, cellphones, iPads, iPods, or any other electronic/communication devices are permitted in the classroom.
- Students must attend the sections they are assigned to. No attendance credit will be given if you attend a “wrong” section.
IV. GRADING POLICY

• Overall grade will be determined as follows:

 20% LAB grade (attendance mandatory; see Section V for details)
 15% HOMEWORK (no makeup; working in groups OK; must be submitted individually)
 3% Reading Assignments / Quizzes
 2% Participation (attendance mandatory; see Section VIII for details)
 60% EXAM 1 (no makeup; must be taken with the section you are registered for)
 EXAM 2 (no makeup; must be taken with the section you are registered for)
 EXAM 3 (no makeup; must be taken with the section you are registered for)
 EXAM 4 (no makeup; must be taken with the section you are registered for)
 EXAM 5 (no makeup; must be taken with the section you are registered for)

 Worst of 5 exams dropped

100% TOTAL

• Letter grades will be assigned in accordance with the following cut-offs (for additional rules see below):

 F: [0, 55)
 D: [55, 65)
 C−: [65, 68)
 C: [68, 72)
 C+: [72, 75)
 B−: [75, 78)
 B: [78, 82)
 B+: [82, 85)
 A−: [85, 90)
 A: [90, 100]

NOTE: There is no rounding, 64.99 = “D”, etc.

V. LABS (20%)

• All students are required to attend LABS.
• Students who are not assigned a lab grade due to non-attendance will automatically receive a failing grade (“F”) for the course.
• PLEASE NOTE:
 ▪ Labs will be meeting on Monday, August 21st
 ▪ The lab syllabus can be found at. Use the link below from the Department’s web site, then scroll down to your particular lab section.
 https://www.physast.uga.edu/courses

VI. HOMEWORK (15%)

• There will be a number of HOMEWORK assignments posted online (on the Mastering Physics website).
• All assignments count towards your grade.
• All assignments must be submitted on time.
• No makeup, no late submission.
• Rules:
 ▪ You may work in groups.
 ▪ You submit your work individually.
VII. READING ASSIGNMENTS / QUIZZES (3%)

- Starting from class 2, there will be a reading assignment given each day.
- Starting from week 2, there will be a reading quiz given each day.

VIII. PARTICIPATION & ATTENDANCE (2%)

- Class attendance is mandatory and will be monitored regularly. You are responsible for obtaining any announcements/materiaлиз/information that were given out in a class that you missed.
- You will be allowed a total four (4) missed classes.
- Those students who miss no more than four (4) classes during the semester will receive the following benefits:
 - A 2% participation grade
 - Your lowest homework grade will be dropped.
 - Should you earn a grade of B or better in the class, I will be happy to write you a letter(s) of recommendation.
- Students who miss more four (4) and less than ten (10) classes will have earn a 1% participation grade.
- Students who miss more than ten (10) classes will have earn a 0% participation grade.

NOTE: YOU are responsible for keeping track of your absences.

IX. EXAMS (60% TOTAL)

- There will be a total of five (5) EXAMS on selected chapters.
- Worst of the five exam grades will be dropped (such as, e.g., a “0” due to non-attendance), so, technically, each exam is worth 15%.
- No makeups or re-scheduling is permitted.

- Rules for the EXAMS:
 - ONE (1) STANDARD SHEET of paper containing anything you want (e.g., physical constants, formulae, diagrams, problem solutions, etc.) ALL HANDWRITTEN. You may write on both sides
 - A simple (non-graphing, non-symbolic, non-programmable) scientific calculator.
 - No other electronic device(s) permitted.
 - Must work individually.

X. INCOMPLETES

- You may be assigned an “I” (incomplete) for the course in accordance with the UGA Regulations, provided all of the following applies:
 - You received a non-failing grade in LABS (> 70)
 - You received a non-failing grade (> 55%) on at least one EXAM,
 - No violation of the Academic Honesty Policy took place during the course of the semester.
XI. WITHDRAWALS

- The Undergraduate Bulletin and the Registrar's Office website describe the University policies regarding withdrawals and incompletes. The deadline for withdrawal is Thursday, October 19th.

XII. PEER LEARNING ASSISTANTS

- This course uses Peer Learning Assistants (PLAS).
 - PLAs attend class meetings and work with groups of students in problem-solving activities.
 - PLAs will also be available to answer questions outside of class periods and may organize problem solving or review sessions.
 - Please remember: the goal is to learn from your Peer Learning Assistants, not for them to do your homework for you.

XIII. TUTORS

- Tutors are available through the following:
 - Department of Physics and Astronomy: https://www.physast.uga.edu/tutors/
 - UGA Tutoring Program: http://tutor.uga.edu/arc/tutoring/ Please remember: the goal is to learn from your tutor, not for them to do your homework for you.

XIV. HOW TO DO WELL IN THIS CLASS

- Read each chapter before it is discussed in class.
- Attend every lecture.
- Participate actively in discussions.
- Re-read chapter carefully after class.
- Do assigned homework.
- Solve as many end-of-chapter problems as possible.
- Use a buddy system: find a friend with whom to discuss physics.
- Think about physics on a regular basis.
- If everything fails, consider dropping the class before the deadline and retaking it at a later time.
TABLE I: Fall 2017 Master Schedule

ATTENTION: This schedule is preliminary and is subject to modification. Especially Reading Assignments, which will be assigned at the end of each class.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Reading</th>
<th>Topics</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 15</td>
<td>–</td>
<td>Intro to this course; Principles of GO GO: Reflection; Plane mirrors; Spherical mirrors</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Aug 17</td>
<td>26.1-2</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>Aug 22</td>
<td>26.3-4</td>
<td>GO: Refraction; Total internal reflection; Ray tracing for lenses; thin lens equation</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Aug 24</td>
<td>26.5-7</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>Aug 29</td>
<td>27.1-2</td>
<td>OI: Human eye, camera; Corrective optics</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Aug 31</td>
<td>27.3-5</td>
<td>OI: Magnifying glass; Microscope; Telescope</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>Sep 5</td>
<td>28.1-2</td>
<td>WO: Superposition & interference, Two-slit experiment</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 7 (E1)</td>
<td>–</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXAM 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sep 12</td>
<td>28.4,6; 19.1</td>
<td>WO: Single-slit diffraction; Diffraction gratings</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 14</td>
<td>19.2,3</td>
<td>WO: Spectrometers; EF: Electric charge EF: Insulators & conductors; Coulomb’s Law</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>Sep 19</td>
<td>19.4-5</td>
<td>EF: Electric field; field lines; capacitor</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 21</td>
<td>19.6-7</td>
<td>EF: Shield. & charge. by induction, Electric flux & Gauss’ Law</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>Sep 26</td>
<td>20.1-2</td>
<td>REVISITING: Energy, WET & LCE; EP: Electric potential & energy; Energy conservation</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Sep 28 (E2)</td>
<td>–</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXAM 2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 3</td>
<td>20.3-4</td>
<td>EP: Electric potential of pt. charges; Equipot. surfaces & E-field</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 5</td>
<td>20.5-6</td>
<td>EP: Capacitors & dielectrics; Electric energy storage</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>Oct 10</td>
<td>–</td>
<td>CH. 20-21: Problem Solving</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 12</td>
<td>21.1-4</td>
<td>DC: Electric current; Ohm’s Law; Energy & power in EC</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>Oct 17</td>
<td>21.5</td>
<td>DC: Resistors in series & parallel; Kirchhoff’s Rule</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 19 (E3)</td>
<td>–</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXAM 3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oct 24</td>
<td>22.1-2</td>
<td>MF: Magnetic field; Magnetic force on moving charges</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Oct 26</td>
<td>22.3-4</td>
<td>MF: Motion of charged particles in magnetic field; Magnetic force on c-carrying wire</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td>Oct 31</td>
<td>22.5</td>
<td>MF: Magnetic force on c-carrying loops & magn. torque MF: Ampere’s Law; loops & solenoids; Magnetism in matter</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 2</td>
<td>22.6-8</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>Nov 7</td>
<td>23.1-4</td>
<td>EMF: Induced EMF; Magnetic flux; Faraday’s Law; Lenz’s Rule</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 9 (E4)</td>
<td>23.5-6</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXAM 4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov 14</td>
<td>23.5-10</td>
<td>EMF: Work & E. Energy; Generators; Inductance; RL circuits; Energy in a B-field; transformers AC1: RMS values; EMW: EM waves; spectrum</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 16</td>
<td>24-1,25.1-2</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>–</td>
<td>THANKSGIVING BREAK</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Nov 28</td>
<td>24-1,25.1-2</td>
<td>EMW: Doppler effect; EMW: Energy & momentum</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Nov 30</td>
<td>25.3-5</td>
<td>EMW: Polarization; Review</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td>Dec 12 (E5)</td>
<td>–</td>
<td>EXAM 5 (8:00 A.M. - 9:15 A.M.)</td>
<td>T</td>
</tr>
</tbody>
</table>