ASTR 1010L & 1020L
INTRODUCTION TO ASTRONOMY LAB
Fall 2014

Professor: Loris Magnani
Office: Physics 238
E-Mail: loris@physast.uga.edu
Web Page: www.physast.uga.edu/~loris follow the link to ASTR1010L & 1020L. IT IS IMPERATIVE THAT YOU MONITOR THIS WEB PAGE AT LEAST ON A WEEKLY BASIS. Important announcements for the course will be posted there throughout the semester.
Phone: 542-2876
Teaching Assistants: Allison Smith, Tara Hufford
E-Mail for TA's: allison@physast.uga.edu, tara@physast.uga.edu

Class: Tuesday 8:00 – 10:45 PM – Room 202, Physics Bldg.
Office Hours: M 3:30 – 5:00 PM or by appointment

COURSE OBJECTIVES

The purpose of this course is to introduce you to the night sky and to small telescopes for making simple astronomical observations. These courses are de-coupled from the ASTR 1010 and ASTR 1020 lecture courses in the sense that (1) they don’t have to be taken the same semester as the corresponding lecture course and (2) they don’t necessarily cover the subject matter of the lecture course. The reason for not covering the subject matter of the corresponding lecture course is that it is too difficult to observe most of the non-stellar objects discussed in ASTR 1020 using our small telescopes at the not-very-dark-sky sites we use.

The basic aim of the course is to get the student to complete 6 lab assignments, 4 Indoor labs involving written handouts, and 2 outdoor labs which involve telescopic
observations. This will give the students an introduction to the night sky, to small telescopes, and to online astronomical databases. Because we are at the mercy of the weather (you cannot make visual telescopic observations of the night sky if it’s cloudy or raining), we also have 4 written labs that will be worked on during cloudy or rainy nights (see below for details).

METHODOLOGY

The objectives of the course will be achieved by having the students to complete 6 astronomical lab exercises, 2 of which involve telescopic observations. This will give the students an introduction to the night sky and to using telescopes. The 4 non-telescope labs involve using online astronomical databases; an important tool that allows us to explore the night sky. There will also be a written lab final exam and 2 in-class quizzes.

You will choose 2 of 3 observing labs during the course of the semester. The 3 observing labs are the following:

1) Sketches of lunar craters to determine the height of lunar mountains.
2) Finding at least 4 double or multiple star systems.
3) Deriving the mass of Saturn from observations of its satellite, Titan.

In addition to the observing labs you will complete 4 written (indoor) labs during the course of the semester. The 4 indoor labs are the following:

1) Star Charts and the Celestial Sphere.
2) Using the Naval Observatory’s star chart database to create maps of small regions of the sky.
3) Using the SIMBAD database to determine physical information on a sample of celestial objects.
4) Using the Virtual Observatory database to study a selected (by me) area of the sky.

To do the above labs,

YOU WILL NEED TO BRING A LAPTOP TO CLASS THAT CAN WIRELESSLY CONNECT TO THE INTERNET.

I will allow people to work together (see below) so only one person in each group needs to bring a laptop.

By the end of the semester, you will have turned in lab reports on 6 of the above labs (2 observational and 4 indoor).

A write-up describing each lab is on the web page.
I will break up the class into groups of 3 (or, if the situation calls for it, groups of 4) because it will make the observing sessions more manageable. The composition of these groups will remain the same throughout the semester. A single lab report can be turned in by a group, and it is not necessary that all members turn in an individual lab report. However, the quizzes and lab final exam are taken individually.

GRADING

Each lab report is 10% of your final grade. Thus, 6 labs contribute a total of 60% to your final grade. The 2 in-class quizzes will each contribute 10% to your final grade (thus, they will together contribute 20%). The lab-final exam will contribute 20% to your final grade. As mentioned above, the lab-final will be given during the last two weeks of class. From the lab reports, the quizzes, and the lab final, your total score on a scale of 100 will be computed. That numerical grade will be turned into a letter grade using the following key:

- A is for a score of 90.00 or above,
- A- is for the range 87.00 – 89.99,
- B+ is for 84.00 – 86.99,
- B is for 80.00 – 83.99,
- B- is for 77.00 – 79.99,
- C+ is for 74.00 – 76.99,
- C is for 70.00 – 73.99,
- C- is for 60.00 – 69.99,
- D is for 50.00 – 59.99, and
- F is for any average below 50.00.

STUDENT RESPONSIBILITIES

Please make a reasonable attempt to arrive on time. If you must leave earlier than the scheduled end of class, please try to use the upper exits at the top of the lecture hall when we are in room 202. Class disruptions or distracting behavior will not be tolerated.

Ask for clarification on anything you find unclear, ambiguous, or unspecified in this syllabus. This includes both course policies and astronomical topics.

Know the rules concerning withdrawals and incompletes, published in the UGA Undergraduate Bulletin. Note that I will NOT withdraw you from the course for excessive absences. Note also that after the midpoint of the semester, a withdrawal is assigned a grade of WF, except in those cases in which the student is doing satisfactory work and the withdrawal is recommended by the Office of Student Affairs because of emergency or health reasons.

ACADEMIC HONESTY

All students are responsible for knowing, understanding, and abiding by the academic honesty policy of the University of Georgia, which can be found online at http://honesty.uga.edu. If you have any questions about this policy and how it
pertains to your work in this course, please ask me for clarification.

TENTATIVE SCHEDULE

Aug. 19 – Lecture on the celestial sphere.
Aug. 26 – Lecture on the celestial sphere.
Sept. 2 – Lecture on the celestial sphere.
Sept. 9 – Indoor exercise on celestial sphere – Lecture on telescopes.
Sept. 16 – Quiz on the celestial sphere – Learning the night sky.
Sept. 23 – Learning the night sky and telescopes.
Sept. 30 – Indoor exercise on star charts or observational session
Oct. 7 – Observational session or indoor exercise
Oct. 14 – Observational session or indoor exercise
Oct. 21 – Quiz on the night sky – Indoor exercise on SIMBAD
Oct. 28 – Observational session or indoor exercise
Nov. 4 – Indoor exercise on SKYVIEW or observational session
Nov. 11 – Observational session
Nov. 18 – Lab Final – observational session
Nov. 25 – Thanksgiving Break (no class)
Dec. 2 – Lab Final - final observational session