
	 SOLUTION	

The	University	of	Georgia	
Department	of	Physics	and	Astronomy	

	
	

Prelim	Exam	
August	13,	2021	

	
	

Part	I	(problems	1,	2,	3,	and	4)	
9:00	am	–	1:00	pm	

	
	
	
Instructions:		
	

• Start	each	problem	on	a	new	sheet	of	paper.	Write	the	problem	number	on	the	
top	left	of	each	page	and	your	pre-arranged	prelim	ID	number	(but	not	your	
name)	on	the	top	right	of	each	page.		
	

• Leave	margins	for	stapling	and	photocopying.		
	

• Write	only	on	one	side	of	the	paper.	Please	do	not	write	on	the	back	side.		
	

• If	not	advised	otherwise,	derive	the	mathematical	solution	for	a	problem	from	
basic	principles	or	general	 laws	(Newton’s	 laws,	 the	Maxwell	equations,	the	
Schrödinger	equation,	etc.).		
	

• You	may	use	a	calculator	 for	basic	operations	only	 (i.e.,	not	 for	referring	 to	
notes	stored	 in	memory,	symbolic	algebra,	symbolic	and	numerical	 integra-
tion,	etc.)	The	use	of	cell	phones,	tablets,	and	laptops	is	not	permitted.		
	

• Show	your	work	and/or	explain	your	reasoning	in	all	problems,	as	the	graders	
are	not	able	to	read	minds.		Even	if	your	final	answer	is	correct,	not	showing	
your	work	and	reasoning	will	result	in	a	substantial	penalty.	
	

• Write	your	work	and	reasoning	in	a	neat,	clear,	and	logical	manner	so	that	the	
grader	can	follow	it.		Lack	of	clarity	is	likely	to	result	in	a	substantial	penalty.	

	
	 	



	 SOLUTION	

Problem	1:		Classical	Mechanics		
	
Initially,	a	block	of	mass	𝑚	is	held	motionless	on	a	frictionless	wedge	of	mass	𝑀	and	
angle	of	inclination	𝜃	(see	diagram).		The	wedge	rests	on	a	frictionless	horizontal	sur-
face.		The	block	is	released	from	rest.		Choose	variables	such	that	𝑥!	is	the	position	of	
the	wedge	to	the	left	of	some	(arbitrary)	origin	and	𝑥"	is	the	position	of	the	block	to	
the	right	of	that	same	origin;	i.e.,	𝑥! + 𝑥"	increases	as	the	block	slides	down	the	wedge.		
[Hint:	The	wedge	moves	at	the	same	time	that	the	block	moves,	so	the	horizontal	dis-
placement	of	the	block	relative	to	the	wedge	is	𝑥! + 𝑥",	not	merely	𝑥!.]		
	

	
	
(a) How	is	the	Lagrangian,	𝐿(𝑞!, … , 𝑞# , �̇�!, … , �̇�#),	for	a	system	defined?		What	is	the	

general	form	of	the	Euler-Lagrange	equation	of	motion	for	the	𝑖th	degree	of	free-
dom,	𝑞$?	

(b) Write	down	the	Lagrangian	for	this	system	in	terms	of	variables	𝑥!	and	𝑥",	their	
first	time	derivatives	�̇�!	and	�̇�",	and	constants	𝑔,	𝑀,	𝑚,	and	tan 𝜃.		[Note:	Do	not	
invent	alternate	variables	or	constants.]	

(c) Use	the	Euler-Lagrange	formalism	to	deduce	equations	of	motion	for	𝑥!	and	𝑥".		
You	do	not	have	to	solve	either	equation.	

	
Solution:	
	
(a) The	 Lagrangian	 is	 given	 by	 𝐿(𝑞$ , �̇�$) = 𝑇(𝑞$ , �̇�$) − 𝑉(𝑞$).	 	 The	 Euler-Lagrange	

equation	of	motion	for	the	𝑖th	degree	of	freedom	is:	
	

𝑑
𝑑𝑡 8

𝜕𝐿
𝜕�̇�$

: =
𝜕𝐿
𝜕𝑞$

	.	

	
(b) For	this	problem,	𝑦! = constant = 0	and	𝑦" = (𝑥! + 𝑥") tan 𝜃,	so	that	�̇�! = 0	and	

�̇�" = (�̇�! + �̇�") tan 𝜃.		Hence:	
	

𝑇 = !
"
	𝑀(�̇�!" + �̇�!") +

!
"
	𝑚(�̇�"" + �̇�"")	

				= !
"
	𝑀�̇�!" +

!
"
	𝑚[�̇�"" + (�̇�! + �̇�")" tan" 𝜃];	

	

𝑉 = 𝑚𝑔𝑦" = 𝑚𝑔(𝑥! + 𝑥") tan 𝜃.	



	 SOLUTION	

	
The	Lagrangian	for	this	system	is:	
	

𝐿 = !
"
	𝑀�̇�!" +

!
"
	𝑚[�̇�"" + (�̇�! + �̇�")" tan" 𝜃] − 𝑚𝑔(𝑥! + 𝑥") tan 𝜃.	

	
(c) The	Euler-Lagrange	equation	applied	to	degree	of	freedom	𝑖 = 1	yields:	

	
𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�!

=
𝑑
𝑑𝑡
[𝑀�̇�! +𝑚(�̇�! + �̇�") tan" 𝜃]	

													= 𝑀�̈�! +𝑚(�̈�! + �̈�") tan" 𝜃 ;	
	

𝜕𝐿
𝜕𝑥!

= 𝑚𝑔 tan 𝜃 ;	
	

∴ 			 𝑀�̈�! +𝑚(�̈�! + �̈�") tan" 𝜃 = 𝑚𝑔 tan 𝜃 	.	
	
The	Euler-Lagrange	equation	applied	to	degree	of	freedom	𝑖 = 2	yields:	
	

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�"

=
𝑑
𝑑𝑡
[𝑚�̇�" +𝑚(�̇�! + �̇�") tan" 𝜃]	

													= 𝑚�̈�" +𝑚(�̈�! + �̈�") tan" 𝜃 ;	
	

𝜕𝐿
𝜕𝑥"

= 𝑚𝑔 tan 𝜃 ;	
	

∴ 			 𝑚�̈�" +𝑚(�̈�! + �̈�") tan" 𝜃 = 𝑚𝑔 tan 𝜃 	.	
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Problem	2:		Classical	Mechanics		
	
Consider	a	uniform,	thin	rod	of	length	𝑙	and	mass	𝑚	pivoted	about	one	end.		Initially	
the	rod	is	oriented	horizontally	and	held	at	rest	by	a	removable	brace.		The	brace	is	
then	removed,	and	the	rod	begins	to	fall	due	to	gravity.	
	

	
	
(a) Calculate	the	moment	of	inertia	about	the	pivot.		Find	the	distance	from	the	pivot	

to	the	point	at	which,	if	all	the	mass	were	concentrated	there,	the	moment	of	iner-
tia	about	the	pivot	axis	would	be	the	same	as	the	real	moment	of	 inertia.	 	This	
distance	is	called	the	radius	of	gyration.			

(b) What	is	the	acceleration	of	the	center-of-mass	of	the	rod	the	instant	after	it	is	re-
leased?		[Hint:	The	answer	is	not	𝑔.]	

(c) What	force	does	the	pivot	exert	on	the	rod	the	instant	after	it	is	released?	
	
Solution:		
	
(a) The	moment	of	inertia	about	the	pivot	is:	

	

𝐼 = K𝑟"𝑑𝑚 = K 𝑥" ⋅
𝑚
ℓ 𝑑𝑥

ℓ

'
=
𝑚
ℓ
𝑥(

3 P
'

ℓ

= !
(
	𝑚ℓ" 	.	

	
The	radius	of	gyration,	𝑘,	is:	
	

𝑚𝑘" = !
(
	𝑚ℓ" 			⟹ 			 𝑘 = !

√(
	ℓ 	.	

	
(b) The	center-of-mass	of	the	rod	is	at	𝑟*+ = ℓ 2⁄ .	 	If	the	angular	acceleration	about	

the	pivot	is	𝛼,	then	the	acceleration	of	the	center-of-mass	is	𝑎*+ = 𝛼𝑟*+ = 𝛼ℓ 2⁄ .		
The	angular	acceleration	is	related	to	the	torque	and	the	moment	of	inertia	by:	
	

!
(
	𝑚ℓ"𝛼 = 𝐼𝛼 = 𝜏,-, =

!
"
	ℓ𝑚𝑔			 ⟹ 			𝛼 =

3𝑔
2ℓ	.	

	
Hence,	the	downward	acceleration	of	the	center-of-mass	is:	
	

𝑎*+ = 𝛼ℓ 2⁄ = (
.
	𝑔 	.	

	
(c) The	pivot	exerts	an	upward	 force	𝐹,	 and	gravity	exerts	a	downward	 force	𝑚𝑔.		

Hence,	by	Newton’s	2nd	Law:	
	

𝑚𝑎 = 𝑚𝑔 − 𝐹			 ⟹ 			𝐹 = 𝑚𝑔 −𝑚𝑎 = 𝑚𝑔 − (
.
	𝑚𝑔			 ⟹ 			𝐹 = !

.
	𝑚𝑔.	

Fixed pivot 
point 

Removeable 
brace 

ℓ 
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Problem	3:		Electromagnetism		
	
A	metal	sphere	of	radius	𝑅,	carrying	a	charge	𝑞,	is	surrounded	by	a	thick	concentric	
metal	shell	(inner	radius	𝑎,	outer	radius	𝑏).		The	shell	carries	no	net	charge.	
	
(a) Find	the	surface	charge	density	at	𝑅,	at	𝑎,	and	at	𝑏.	
(b) Find	the	potential	at	the	center,	using	infinity	as	the	reference	point.	
(c) Find	the	capacitance	of	this	system.	
	
Solution:		
	
(a) Since	the	sphere	and	the	shell	are	both	conductors,	any	net	charge	must	reside	at	

their	surface(s).		Hence,	the	surface	charge	density	of	the	sphere	is:	
	

𝜎/ =
𝑞

4𝜋𝑅"	.	
	
In	order	for	the	electric	field	inside	the	shell	to	vanish,	a	total	charge	−𝑞	is	induced	
on	its	inner	surface,	meaning	a	total	charge	𝑞	is	induced	on	its	outer	surface	(i.e.,	
the	net	charge	on	the	shell	is	zero).		Hence:	
	

𝜎0 =
−𝑞
4𝜋𝑎" 			and			𝜎1 =

𝑞
4𝜋𝑏"	.	

	
(b) At	𝑟 = ∞	the	potential	is	zero,	so	at	the	center,	𝑟 = 0,	the	potential	is:	

	

𝑉(0) = −K 𝐄 ⋅ 𝑑𝓵
'

2
= −K 𝐸!𝑑𝑟

1

2
−K 𝐸"𝑑𝑟

0

1
−K 𝐸(𝑑𝑟

/

0
−K 𝐸.𝑑𝑟

'

/
,	

	
where:	
	

𝐸! = 𝐸( =
1

4𝜋𝜖'
𝑞
𝑟" 				and				𝐸" = 𝐸. = 0.	

	
Thus:	

𝑉(0) = −K
1

4𝜋𝜖'
𝑞
𝑟" 𝑑𝑟

1

2
−K

1
4𝜋𝜖'

𝑞
𝑟" 𝑑𝑟

/

0
=

𝑞
4𝜋𝜖'

c
1
𝑏 −

1
𝑎 +

1
𝑅d	.	

	
(c) There	are	 two	 inequivalent	ways	of	 interpreting	what	 is	meant	by	 “the	capaci-

tance”	here.	 	(i)	On	the	one	hand,	you	could	think	of	this	system	as	having	two	
conductors,	so	the	capacitance	is	the	charge	stored	on	them	(+𝑞	on	one,	−𝑞	on	the	
other)	per	unit	potential	difference	between	them,	𝐶 = 𝑞 [𝑉(𝑅) − 𝑉(𝑎)]⁄ .		This	is	
more	aligned	with	the	definition	one	would	find	in,	say,	Griffiths.		(ii)	On	the	other	
hand,	you	could	think	of	the	spherical	shell	conductor	as	being	like	an	infinite	di-
electric	 between	 the	 spherical	 conductor	 charged	 to	 +𝑞	 and	 the	 putative	
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“conductor	at	infinity”	with	charge	−𝑞.	 	Then	𝐶 = 𝑞 [𝑉(0) − 𝑉(∞)]⁄ .	 	This	inter-
pretation	is	what	one	might	guess	from	the	parts	that	came	before,	describing	how	
the	system	was	charged.		Given	the	ambiguity,	full	credit	was	awarded	for	either	
solution.		Below	are	both	possibilities:	
	
(i) Imagine	charge	+𝑞	on	the	inner	(spherical)	conductor.		Then	the	potential	dif-

ference	between	the	inner	conductor	(sphere)	and	outer	conductor	(shell)	is:	
	

∆𝑉 = −K
1

4𝜋𝜖'
𝑞
𝑟" 𝑑𝑟

/

0
=

1
4𝜋𝜖'

𝑞
𝑟g0

/
=

𝑞
4𝜋𝜖'

c
1
𝑅 −

1
𝑎d =

𝑞
4𝜋𝜖'

𝑎 − 𝑅
𝑎𝑅 	.	

	
Hence,	the	capacitance	is	given	by:	
	

𝐶 =
𝑞
∆𝑉 =

4𝜋𝜖'𝑎𝑅
𝑎 − 𝑅 	.	

	
(ii) Here	𝑉(0) − 𝑉(∞)	the	same	as	was	calculated	in	part	(b).		Therefore,	for	this	

interpretation,	the	capacitance	is	given	by:	
	

𝐶 =
𝑞
∆𝑉 =

𝑞
𝑉(0) − 𝑉(∞) = 4𝜋𝜖' c

1
𝑏 −

1
𝑎 +

1
𝑅d

3!

=
4𝜋𝜖' ⋅ 𝑎𝑏𝑅

𝑎𝑅 − 𝑏𝑅 + 𝑎𝑏	.	
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Problem	4:		Electromagnetism		
	
Faraday	disk	generator:	As	shown	in	the	figure	below,	consider	a	copper	disk	spin-
ning	in	a	uniform	external	magnetic	field	𝐵i⃗ = 𝐵�̂�.	Let	𝑎	be	the	radius	of	the	disk,	and	
let	𝜔ii⃗ = 𝜔�̂�	be	 its	angular	velocity.	 	There	 is	a	conducting	wire	 fixed	 in	space,	with	
sliding	contacts	at	the	rim	and	the	center	of	the	disk.		The	total	resistance	of	the	sys-
tem	is	𝑅.		
	

	
	
(a) Find	the	current	𝐼	flowing	through	the	wire.	
(b) Find	the	torque	𝜏	generated	by	the	rotating	disk.	
	

Solution:	
	
(a) The	EMF	of	the	rotating	disk	can	be	expressed	as:	

	

𝜀 = o �⃗� × 𝐵i⃗ ∙ 𝑑𝑙
	

4
,	

	
so	that:	
	

𝜀 = K 𝜔𝑟𝐵𝑑𝑟 =
1
2𝐵𝜔𝑎

"
0

'
.	

	
Equivalently,	if	one	considers	any	free	charge	q	in	the	disk	at	the	radius	r	from	the	
center,	under	the	uniform	magnetic	field	𝐵i⃗ ,	this	charge	will	feel	a	Lorentzian	force:	
	

�⃗� = 𝑞�⃗� × 𝐵i⃗ = 𝑞𝜔𝑟𝐵�̂�.	
	
Thus,	there	is	an	effective	electric	field	generated	along	the	radial	direction:	
	

𝐸i⃗ =
�⃗�
𝑞 = 𝜔𝑟𝐵�̂�.	

	
Hence,	the	generated	EMF	is	(once	again):	
	

w

B

I
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𝜀 = K 𝜔𝑟𝐵𝑑𝑟 =
1
2𝐵𝜔𝑎

"
0

'
.	

	
In	any	event,	according	to	the	Ohm’s	law,	the	current	flowing	through	wire	is:	
	

𝐼 =
𝜀
𝑅 =

1
2𝑅 𝐵𝜔𝑎

".	
	

(b) To	calculate	the	torque,	assume	that	the	linear	cur-
rent	 density	 𝐽(𝑟)	 in	 an	 area	 element	 𝑑𝐴 = 𝑟𝑡𝑑𝜙,	
where	 r	 is	 the	 radius	 and	 t	 is	 the	 thickness	 of	 the	
disk,	and	the	magnetic	force	𝑑�⃗�	can	be	expressed	as:	
	

𝑑�⃗� = 	𝐽(𝑟)𝑟𝑡𝑑𝜙𝐵𝜙v.	
	
In	addition,	according	to	the	conservation	of	charge	
or	current,	one	has:	
	

𝐼 = o 𝐽(𝑟)𝑟𝑡𝑑𝜙 = K 𝐽(𝑟)𝑟𝑡𝑑𝜙
"5

6
= 2𝜋𝐽(𝑟)𝑟𝑡				 ⟹ 				𝐽(𝑟) =

𝐼
2𝜋𝑟𝑡	.	

	
Thus,	𝑑�⃗� = 78

"5
𝑑𝜙𝑑𝑟𝜙v,	and	𝑑𝜏 = 𝑟 × 𝑑�⃗� = −𝑟 78

"5
𝑑𝜙𝑑𝑟�̂�.		Hence:	

	

𝜏 = −
𝐼𝐵
2𝜋 �̂� K𝑑𝑟

0

'

K 𝑟𝑑𝜙
"5

'

= −
𝐼𝐵𝑎"

2 �̂�.	

	
	
	

	
	
	 	

dI
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	 SOLUTION	

The	University	of	Georgia	
Department	of	Physics	and	Astronomy	

	
	

Prelim	Exam	
August	13,	2021	

	
	

Part	II	(problems	5	and	6)	
2:00	pm	–	4:00	pm	

	
	
	
Instructions:		
	

• Start	each	problem	on	a	new	sheet	of	paper.	Write	the	problem	number	on	the	
top	left	of	each	page	and	your	pre-arranged	prelim	ID	number	(but	not	your	
name)	on	the	top	right	of	each	page.		
	

• Leave	margins	for	stapling	and	photocopying.		
	

• Write	only	on	one	side	of	the	paper.	Please	do	not	write	on	the	back	side.		
	

• If	not	advised	otherwise,	derive	the	mathematical	solution	for	a	problem	from	
basic	principles	or	general	 laws	(Newton’s	 laws,	 the	Maxwell	equations,	the	
Schrödinger	equation,	etc.).		
	

• You	may	use	a	calculator	 for	basic	operations	only	 (i.e.,	not	 for	referring	 to	
notes	stored	 in	memory,	symbolic	algebra,	symbolic	and	numerical	 integra-
tion,	etc.)	The	use	of	cell	phones,	tablets,	and	laptops	is	not	permitted.		
	

• Show	your	work	and/or	explain	your	reasoning	in	all	problems,	as	the	graders	
are	not	able	to	read	minds.		Even	if	your	final	answer	is	correct,	not	showing	
your	work	and	reasoning	will	result	in	a	substantial	penalty.	
	

• Write	your	work	and	reasoning	in	a	neat,	clear,	and	logical	manner	so	that	the	
grader	can	follow	it.		Lack	of	clarity	is	likely	to	result	in	a	substantial	penalty.	
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Problem	5:		Quantum	Mechanics		
	
A	particle	of	mass	𝑚	 in	a	1D	 infinite	square	well	of	width	𝑎	has	as	 its	 initial	wave	
function	an	even	mixture	of	the	first	two	energy	eigenstates:	
	

𝜓(𝑥, 0) = 𝐴[𝜑!(𝑥) + 𝜑"(𝑥)].	
	
(a) Find	𝐴	that	normalizes	𝜓(𝑥, 0).	
(b) Find	𝜓(𝑥, 𝑡)	 and	 |𝜓(𝑥, 𝑡)|".	 	 Express	 the	 latter	 as	 a	 sinusoidal	 function	of	 time.		

[Note:		To	simplify	the	result,	use	𝜔 ≡ 𝜋"ℏ 2𝑚𝑎"⁄ .]	
(c) Calculate	the	expectation	value	of	position,	〈𝑥(𝑡)〉.		Notice	that	it	oscillates	in	time.		

What	is	the	angular	frequency	of	oscillation?		What	is	the	amplitude	of	oscillation?			

(d) If	you	measured	the	energy	of	this	particle,	what	values	might	you	get?		What	is	
the	probability	of	getting	each	of	them?		Calculate	the	expectation	value	of	energy.		
How	does	it	compare	with	𝐸!	and	𝐸",	the	two	lowest	energy	eigenvalues?	

	

[For	the	1D	infinite	square	well,	𝜑9(𝑥) = ~2/𝑎 sin(𝑛𝜋𝑥 𝑎⁄ )	and	𝐸9 = 𝑛"𝜋"ℏ" 2𝑚𝑎"⁄ .]	

	
Solution:		
	
(a) Normalizing	the	wavefunction	gives	𝐴:	

	

1 = K |𝜓(𝑥, 0)|"𝑑𝑥
2

32
	

			= |𝐴|" �K |𝜑!|"𝑑𝑥
2

32
+K |𝜑"|"𝑑𝑥

2

32
+K 𝜑!∗𝜑"𝑑𝑥

2

32
+K 𝜑"∗𝜑!𝑑𝑥

2

32
�.	

	
The	first	and	second	terms	are	both	1	and	the	third	and	fourth	terms	are	both	0,	
because	the	{𝜑$}	are	orthonormal.		Hence:	
	

1 = |𝐴|"[1 + 1 + 0 + 0] 		⟹			 |𝐴|" = 1 2⁄ .	
	
The	overall	phase	is	arbitrary,	so	we	choose,	by	convention,	to	have	𝐴	be	real.		That	
means	𝐴 = 1 √2⁄ .	
	

(b) Since	𝜓(𝑥, 0)	is	given	as	an	expansion	in	energy	eigenstates,	all	we	have	to	do	to	
obtain	𝜓(𝑥, 𝑡)	is	multiply	each	term	by	the	phase	factor	𝑒3$;!< ℏ⁄ ≡ 𝑒3$9"?<:	
	

𝜓(𝑥, 𝑡) =
1
√𝑎

csin �
𝜋𝑥
𝑎 � 𝑒

3$?< + sin 8
2𝜋𝑥
𝑎 : 𝑒3.$?<d.	

	
The	magnitude	squared	of	the	above	is:	
	

|𝜓(𝑥, 𝑡)|" =
1
𝑎 csin

" �
𝜋𝑥
𝑎 � + sin

" 8
2𝜋𝑥
𝑎 : + 2 sin �

𝜋𝑥
𝑎 � sin 8

2𝜋𝑥
𝑎 : cos(3𝜔𝑡)d.	



	 SOLUTION	

(c) The	expectation	value	of	position	is	given	by:	
	

〈𝑥(𝑡)〉 = K𝑥|𝜓(𝑥, 𝑡)|"𝑑𝑥	
	

													=
1
𝑎K 𝑥 sin" �

𝜋𝑥
𝑎 � 𝑑𝑥

0

'
+
1
𝑎K 𝑥 sin" 8

2𝜋𝑥
𝑎 :𝑑𝑥

0

'

+
2
𝑎 cos

(3𝜔𝑡)K 𝑥 sin �
𝜋𝑥
𝑎 � sin 8

2𝜋𝑥
𝑎 : 𝑑𝑥

0

'
	

	

														=
𝑎
2 −

16𝑎
9𝜋" cos

(3𝜔𝑡).	
	
The	 angular	 frequency	 of	 oscillation	 is	3𝜔,	 and	 the	 amplitude	 of	 oscillation	 is	
16𝑎 9𝜋"⁄ .	

	
(d) Given	that	the	initial	state	is	an	even	mixture	of	the	two	lowest	energy	eigenstates,	

the	only	values	of	energy	that	can	be	measured	are	𝐸! = ℏ𝜔	and	𝐸" = 4ℏ𝜔.		More-
over,	the	probability	of	measuring	each	energy	value	is	𝒫! = 𝒫" = 1 2⁄ .		Since	en-
ergy	 is	 conserved,	 these	 probabilities	 do	 not	 vary	with	 time.	 	 The	 expectation	
value	of	energy	is	computed	as	follows:	
	

〈𝐸〉 =�𝐸9𝒫9
9

= !
"
	𝐸! +

!
"
	𝐸" =

ℏ𝜔 + 4ℏ𝜔
2 = @

"
	ℏ𝜔.	

	
Clearly,	the	〈𝐸〉	is	halfway	between	𝐸!	and	𝐸".	
	
	

	 	



	 SOLUTION	

Problem	6:		Quantum	Mechanics		
	
Consider	 the	quantum	subspace	 corresponding	 to	 total	 angular	momentum	ℓ = 2.		
For	this	subspace,	what	are	the	eigenvalues	of	the	following	operators?	
	
(a) 𝐿vA	

(b) #$	𝐿vB −
%
$	𝐿vC	

(c) 2𝐿vB − 6𝐿vC + 3𝐿vA	

	
Solution:		
	

(a) Obviously,	the	eigenvalues,	in	units	of	ℏ,	of	the	𝐿vA	operator	for	the	ℓ = 2	subspace	
are	+2,+1, 0, −1,−2.	
	

(b) The	operator	#$	𝐿vB −
%
$	𝐿vC	can	be	regarded	as	the	dot	product	𝐧 ⋅ 𝐋� ,	where	the	vector	

𝐧 = #
$	�̂�B −

%
$	�̂�C	and	𝐋� 	is	the	angular	momentum	vector	operator.		Thus	𝐧	is	a	unit	

vector.		If	we	rotate	the	frame	so	that	the	new	𝑧	axis	coincides	with	the	𝐧	direction,	
we	recover	the	𝐿vA	operator	for	the	new	frame.		Because	of	rotational	invariance,	
the	eigenvalues	are	unchanged.		Hence,	the	eigenvalues	of	the	operator	#$	𝐿vB −

%
$	𝐿vC ,	

in	units	of	ℏ,	are	+2,+1, 0, −1,−2.	
	

(c) The	operator	2𝐿vB − 6𝐿vC + 3𝐿vA	can	also	be	represented	as	a	dot	product,	but	now	
with	a	vector	𝐧	of	magnitude	7.		Using	the	same	argument	as	in	(b),	we	find	the	
eigenvalues	of	this	operator,	in	units	of	ℏ,	are	+14,+7, 0, −7,−14.	

	


