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Prelim	Exam	
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Part	I	(problems	1,	2,	3,	and	4)	
9:00	am	–	1:00	pm	

	
	
	
Instructions:		
	

• Start	each	problem	on	a	new	sheet	of	paper.	Write	the	problem	number	on	the	
top	left	of	each	page	and	your	pre-arranged	prelim	ID	number	(but	not	your	
name)	on	the	top	right	of	each	page.		
	

• Leave	margins	for	stapling	and	photocopying.		
	

• Write	only	on	one	side	of	the	paper.	Please	do	not	write	on	the	back	side.		
	

• If	not	advised	otherwise,	derive	the	mathematical	solution	for	a	problem	from	
basic	principles	or	general	 laws	(Newton’s	 laws,	 the	Maxwell	equations,	the	
Schrödinger	equation,	etc.).		
	

• You	may	use	a	calculator	 for	basic	operations	only	 (i.e.,	not	 for	referring	 to	
notes	stored	 in	memory,	symbolic	algebra,	symbolic	and	numerical	 integra-
tion,	etc.)	The	use	of	cell	phones,	tablets,	and	laptops	is	not	permitted.		
	

• Show	your	work	and/or	explain	your	reasoning	in	all	problems,	as	the	graders	
are	not	able	to	read	minds.		Even	if	your	final	answer	is	correct,	not	showing	
your	work	and	reasoning	will	result	in	a	substantial	penalty.	
	

• Write	your	work	and	reasoning	in	a	neat,	clear,	and	logical	manner	so	that	the	
grader	can	follow	it.		Lack	of	clarity	is	likely	to	result	in	a	substantial	penalty.	
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Problem	1:		Classical	Mechanics		
	
A	particle	moves	along	a	semicircular	path	of	radius	𝑅	from	one	end	(point	𝐴)	to	the	
other	end	(point	𝐵).		At	every	point	along	its	path,	the	particle	feels	a	force	of	constant	
magnitude	𝐹!,	but	always	directed	toward	its	starting	location,	point	𝐴.	 	How	much	
work	does	the	particle	have	to	do	against	this	force	to	go	from	𝐴	to	𝐵?	
	

	
	
	
	
	
	
	
	
The	work	done	by	the	field,	𝑊"#$%&,	and	the	work	done	by	an	external	agent	against	the	
field,	𝑊$'(,	have	to	be	equal	and	opposite	if	there	is	no	change	in	the	kinetic	energy	of	
the	particle:	𝑊$'( = −𝑊"#$%&.		The	work	done	by	the	field	is:	
	

𝑊"#$%& = 0 𝐅 ⋅ 𝑑𝐥
	

*+(,
.	

	
From	the	figure,	𝐅 ⋅ 𝑑𝐥 = 𝐹! cos(𝛽 + 90°) 𝑑𝑙.		If	we	parametrize	the	path	by	𝜃,	then	𝜃	
goes	 from	0°	 to	180°,	𝑑𝑙 = 𝑅𝑑𝜃,	 and	2𝛽 + 𝜃 = 180°	 so	 that	𝛽 + 90° = 180° − 𝜃 2⁄ .		
Hence,	𝐅 ⋅ 𝑑𝐥 = 𝐹! cos(180° − 𝜃 2⁄ ) 𝑅𝑑𝜃 = −𝐹!𝑅 cos(𝜃 2⁄ ) 𝑑𝜃,	and:	
	

𝑊$'( = −𝑊"#$%& = 0 𝐹!𝑅 cos(𝜃 2⁄ ) 𝑑𝜃
-.!°

!°
= 2𝐹!𝑅sin(𝜃 2⁄ )|!°-.!° = 2𝐹!𝑅.	
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Problem	2:		Classical	Mechanics		
	
Three	masses	𝑚- = 𝑚,	𝑚0 = 2𝑚,	and	𝑚1 = 𝑚	are	constrained	to	slide	freely	in	one	
dimension	on	a	horizontal	frictionless	track.		Masses	𝑚-	and	𝑚0	are	connected	by	a	
spring	of	force	constant	is	𝑘,	and	masses	𝑚0	and	𝑚1	are	also	connected	by	a	spring	of	
force	constant	𝑘.		(a)	How	many	normal	modes	are	there	for	this	system?		(b)	What	
are	the	frequencies	of	the	normal	modes?	
	

	

	
(a) There	are	three	masses	that	can	each	move	in	one	dimension.		Hence,	there	are	

three	degrees	of	freedom	and	thus	three	normal	modes.		Two	of	these	are	vibra-
tional	modes	and	one	is	a	zero-frequency,	pure	translational	mode.	

(b) The	equations	of	motion	are:	
𝑚-𝑥̈- = 𝑘(𝑥0 − 𝑥-)	
𝑚0𝑥̈0 = 𝑘(𝑥- − 𝑥0) + 𝑘(𝑥1 − 𝑥0)	
𝑚1𝑥̈1 = 𝑘(𝑥0 − 𝑥1).	

Normal	modes	are	those	for	which	all	atoms	oscillate	at	the	same	frequency;	i.e.,	
𝑥2 = 𝑥2!𝑒234 ,	for	𝑖 = 1, 2, 3.		Upon	substitution,	the	equations	above	become:	

𝑚-𝜔0𝑥-! = 			𝑚𝜔0𝑥-! = 𝑘(𝑥-! − 𝑥0!)	
𝑚0𝜔0𝑥0! = 2𝑚𝜔0𝑥0! = 𝑘(−𝑥-! + 2𝑥0! − 𝑥1!)	
𝑚1𝜔0𝑥1! = 			𝑚𝜔0𝑥1! = 𝑘(−𝑥0! + 𝑥1!).	

Dividing	the	middle	equation	by	2,	we	can	cast	this	as	an	eigenvalue	equation:	

K
𝑘 −𝑘 0

−𝑘 2⁄ 𝑘 −𝑘 2⁄
0 −𝑘 𝑘

L K
𝑥-!
𝑥0!
𝑥1!

L = 𝑚𝜔0 K
𝑥-!
𝑥0!
𝑥1!

L ≡ 𝜆 K
𝑥-!
𝑥0!
𝑥1!

L,	

with	eigenvalues	𝑚𝜔0.		The	eigenvalues	of	the	𝑘-matrix	are	found	as	follows:	

!
𝑘 − 𝜆 −𝑘 0
−𝑘 2⁄ 𝑘 − 𝜆 −𝑘 2⁄
0 −𝑘 𝑘 − 𝜆

! = 0	

(𝑘 − 𝜆)! + 0 + 0 − 0 − "
#	𝑘

#(𝑘 − 𝜆) − "
#	𝑘

#(𝑘 − 𝜆) = 0	

(𝑘 − 𝜆)! − 𝑘#(𝑘 − 𝜆) = 0	
𝜆 = 𝑘			or			𝑘 − 𝜆 = ±𝑘				 ⟹ 				𝜆 = 0, 𝑘, or	2𝑘.	

Hence,	the	normal-mode	frequencies	are:	

𝜔 = 0				or				𝜔 = 4𝑘
𝑚
				or				𝜔 = 42𝑘

𝑚
	.	



Problem	3:		Electromagnetism		
	
A	spherical	conductor	of	radius	𝑎	carries	a	charge	𝑄.		It	is	surrounded	by	a	linear	die-
lectric	material	of	susceptibility	𝜒5 	out	to	radius	𝑏.		What	is	the	energy	of	this	config-
uration?	
	
The	electrostatic	energy,	𝑊,	of	a	configuration	of	charge	is	given	by:	

𝑊 =
1
20𝐃 ⋅ 𝐄	𝑑𝜏,	

where	𝐃	is	the	electric	displacement	field	and	𝐄	is	the	electric	field.		For	the	configu-
ration	given	in	the	problem,	a	simple	Gauss’s	Law	calculation	gives:	

𝐃(𝑟) = W
0, 𝑟 < 𝑎
𝑄

4𝜋𝑟0 𝐫
\, 𝑟 > 𝑎 					and					𝐄

(𝑟) =

⎩
⎪
⎨

⎪
⎧

0, 𝑟 < 𝑎
𝑄

4𝜋𝜖𝑟0 𝐫
\, 							𝑎 < 𝑟 < 𝑏

𝑄
4𝜋𝜖!𝑟0

𝐫\, 𝑟 > 𝑏

	

Hence:	
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2
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Problem	4:		Electromagnetism		
	
A	thin	conducting	rectangular	frame	with	mass	𝑀	and	resistance	𝑅	is	released	from	
the	rest	and	falls	from	a	region	of	constant	magnetic	field	𝐵	normal	to	the	frame	into	
a	region	of	zero	field.		Find	the	velocity	of	the	frame.	

	

	
	

	

	
	

	
	

	
	

According	to	Faraday’s	Law,	a	frame	moving	with	a	speed	𝑣	out	of	a	region	of	uniform	
magnetic	field	can	generate	an	EMF:	

𝜀 = 𝑣𝐵𝑤.	

Therefore,	there	is	a	counter-clockwise	induced	current	in	the	frame:	

𝑖 =
𝜀
𝑅 =

𝑣𝐵𝑤
𝑅 	.	

This	induced	current	feels	a	magnetic	force	for	the	horizontal	edge	of	the	frame	still	
inside	the	magnetic	field.		This	force	opposes	gravity:	

𝐅9+: = 𝑖𝑤𝐵𝐳\ = −
𝐵0𝑤0𝑣
𝑅 𝐳\,	

where		
𝐅:;+< = −𝑀𝑔𝐳\.	

According	to	Newton’s	2nd	Law,	the	equation	of	motion	of	the	frame	is:		

𝑀
𝑑𝑣
𝑑𝑡 = −

𝐵0𝑤0𝑣
𝑅 −𝑀𝑔.	

If	we	let	𝑣8 = 𝑔𝑀𝑅 𝐵0𝑤0⁄ ,	the	equation	above	can	be	written	as:	
𝑑𝑣
𝑑𝑡 +

𝑔
𝑣8

𝑣 = −𝑔.	

The	solution	to	this	differential	equation	is:	

𝑣(𝑡) = 𝑣8r𝑒=>4 ?!⁄ − 1s.	



The	University	of	Georgia	
Department	of	Physics	and	Astronomy	

	
	

Prelim	Exam	
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Part	II	(problems	5	and	6)	
2:00	pm	–	4:00	pm	

	
	
	
Instructions:		
	

• Start	each	problem	on	a	new	sheet	of	paper.	Write	the	problem	number	on	the	
top	left	of	each	page	and	your	pre-arranged	prelim	ID	number	(but	not	your	
name)	on	the	top	right	of	each	page.		
	

• Leave	margins	for	stapling	and	photocopying.		
	

• Write	only	on	one	side	of	the	paper.	Please	do	not	write	on	the	back	side.		
	

• If	not	advised	otherwise,	derive	the	mathematical	solution	for	a	problem	from	
basic	principles	or	general	 laws	(Newton’s	 laws,	 the	Maxwell	equations,	the	
Schrödinger	equation,	etc.).		
	

• You	may	use	a	calculator	 for	basic	operations	only	 (i.e.,	not	 for	referring	 to	
notes	stored	 in	memory,	symbolic	algebra,	symbolic	and	numerical	 integra-
tion,	etc.)	The	use	of	cell	phones,	tablets,	and	laptops	is	not	permitted.		
	

• Show	your	work	and/or	explain	your	reasoning	in	all	problems,	as	the	graders	
are	not	able	to	read	minds.		Even	if	your	final	answer	is	correct,	not	showing	
your	work	and	reasoning	will	result	in	a	substantial	penalty.	
	

• Write	your	work	and	reasoning	in	a	neat,	clear,	and	logical	manner	so	that	the	
grader	can	follow	it.		Lack	of	clarity	is	likely	to	result	in	a	substantial	penalty.	

	 	



Problem	5:		Quantum	Mechanics		
	
Consider	a	free	particle	in	one	dimension.	

(a) Show	that	the	stationary	states	of	the	Hamiltonian	are	of	the	form:	

Ψ(𝑥, 𝑡) = 𝐴𝑒2ABC=DℏB" 0F⁄ G4H.	

Identify	𝑘	 in	terms	of	the	energy	𝐸	of	the	free	particle.	 	Do	not	bother	with	any	
normalization!	

Applying	the	Hamiltonian	to	Ψ(𝑥, 𝑡)	yields:	

ℋwΨ =
𝑝̂0

2𝑚Ψ = −
ℏ0

2𝑚
𝜕0Ψ
𝜕𝑥0 =

ℏ0𝑘0

2𝑚 Ψ = 𝐸Ψ	.	

Since	Ψ(𝑥, 𝑡)	satisfies	the	time-independent	Schrödinger	equation,	it	is	an	energy	
eigenstate	(and	therefore	a	stationary	state)	with	energy:	

𝐸 =
ℏ0𝑘0

2𝑚 	.	

The	factor	𝑒=2DℏB" 0F⁄ G4	clearly	has	the	form	𝑒=2I4 ℏ⁄ ,	which	means	that	Ψ(𝑥, 𝑡) =
Ψ(𝑥, 0)𝑒=2I4 ℏ⁄ 	is	a	time-dependent	stationary	state.	

[Note:	This	has	the	form	of	𝐸 = 𝑝0 2𝑚⁄ ,	where	𝑝 = ℏ𝑘.]	

	
(b) Determine	the	probability	current	𝑗C	of	this	wave	function.		In	what	direction	does	

the	current	flow?	
Hint:	 	 If	you	do	not	remember	 the	 formula	 for	 the	probability	current,	you	can	
derive	it	from	the	continuity	equation	(the	time	change	of	the	probability	density	
must	equal	the	negative	gradient	of	the	probability	current),	combining	it	with	the	
time-dependent	Schrödinger	equation.		In	one	dimension:	

𝜕
𝜕𝑡
|𝜓(𝑥, 𝑡)|0 +

𝜕𝑗C
𝜕𝑥 = 0.	

The	probability	current	is:	

𝑗C =
ℏ
2𝑚𝑖 gΨ

∗ 𝜕Ψ
𝜕𝑥 − Ψ

𝜕Ψ∗

𝑑𝑥 h	
	

					=
ℏ
2𝑚𝑖

(𝑖𝑘 + 𝑖𝑘)Ψ∗Ψ =
ℏ𝑘
𝑚
|𝐴|0.	

Since	𝑗C > 0,	the	current	flows	in	the	+𝑥	direction.	

	
	 	



Problem	6:		Quantum	Mechanics		
	
A	spin-1	particle	is	in	a	state	of	orbital	angular	momentum	𝑙 = 2.	

(a) What	are	the	possible	values	of	𝑗,	the	total	angular	momentum	quantum	number?	
The	total-angular-momentum	quantum	number	𝑗	can	take	on	values	from	|𝑙 − 𝑠|	
to	 𝑙 + 𝑠	 in	 integer	steps,	where	 𝑙	 and	𝑠	 are	 the	orbital-angular-momentum	and	
spin-angular-momentum	quantum	numbers,	respectively.		Since	𝑙 = 2	and	𝑠 = 1:	

𝑗 = 1, 2, or	3.	

(b) List	the	states	of	the	uncoupled	basis,	{|𝑙𝑠𝑚K𝑚L⟩}.		How	many	|𝑙𝑠𝑚K𝑚L⟩	are	there?	
Given	𝑙	and	𝑠,	the	allowed	values	of	𝑚K 	and	𝑚Lare	−𝑙,−𝑙 + 1,… , 𝑙 − 1, and	𝑙	and	
−𝑠,−𝑠 + 1,… , 𝑠 − 1, 𝑠,	respectively.		Hence,	there	are	2𝑙 + 1	values	of	𝑚K 	and	2𝑠 +
1	values	of	𝑚L,	so	that	the	total	number	of	states	is	(2𝑙 + 1)(2𝑠 + 1).		For	the	case	
𝑙 = 2	and	𝑠 = 1,	the	5 ⋅ 3 = 15	states	of	the	uncoupled	basis	are:	
{|𝑙𝑠𝑚K𝑚L} = {|2,1,2,1⟩; 	|2,1,2,0⟩; 	|2,1,2, −1⟩;	 |2,1,1,1⟩; 	|2,1,1,0⟩;		
	

																											|2,1,1, −1⟩;	|2,1,0,1⟩; 	|2,1,0,0⟩; 	|2,1,0, −1⟩;	|2,1, −1,1⟩;		
	

																											|2,1, −1,0⟩;	 |2,1, −1,−1⟩;	|2,1, −2,1⟩;	|2,1, −2,0⟩;	|2,1, −2,−1⟩}.	

(c) List	the	states	of	the	coupled	basis,	��𝑗𝑚M��.		How	many	�𝑗𝑚M�	are	there?	

There	are	the	same	number	of	states	in	the	coupled	basis.		For	𝑙 = 2	and	𝑠 = 1,	the	
15	states	of	the	coupled	basis	are:	

��𝑗𝑚M�� = {|3,3⟩;	|3,2⟩; 	|3,1⟩; 	|3,0⟩; 	|3, −1⟩;	|3, −2⟩;	 |3, −3⟩;		
	

																				|2,2⟩; 	|2,1⟩; 	|2,0⟩; 	|2, −1⟩;	|2, −2⟩;	|1,1⟩; 	|1,0⟩; |1, −1⟩}	

(d) Express	the	coupled	basis	state	�𝑗𝑚M� = |32⟩	in	the	uncoupled	basis,	{|𝑙𝑠𝑚K𝑚L⟩},	
by	lowering	the	state	�𝑗𝑚M� = |33⟩.	

Since	𝑚M = 𝑚K +𝑚L,	there	is	one	and	only	one	uncoupled	basis	state	that	can	con-
tribute	to	the	�𝑗𝑚M� = |3,3⟩	coupled	basis	state;	namely:	

|3,3⟩ = |2,1,2,1⟩.	

We	now	apply	𝐽�= ≡ 𝐿�= + 𝑆�=	to	both	sides.		Lowering	the	left	side	gives:	

𝐽�=|3,3⟩ = ℏ�3(3 + 1) − 3(3 − 1)|3,2⟩ = √6ℏ|3,2⟩.	

Lowering	the	right	side	gives:	

r𝐿�= + 𝑆�=s|2,1,2,1⟩ = 𝐿�=|2,1,2,1⟩ + 𝑆�=|2,1,2,1⟩ = 2ℏ|2,1,1,1⟩ + √2ℏ|2,1,2,0⟩.	

Equating	the	two	yields:	

√6ℏ|3,2⟩ = 2ℏ|2,1,1,1⟩ + √2ℏ|2,1,2,0⟩	
	

∴ 					 |3,2⟩ = �2
3	
|2,1,1,1⟩ 	+	

1
√3
	|2,1,2,0⟩.	


