

DEPARTMENT OF PHYSICS AND ASTRONOMY

COLLOQUIUM IN-PERSON EVENT

Developing Monolayer SnSe for Piezoelectrics Lauren Garten

Assistant Professor School of Materials Science and Engineering Georgia Tech

Unique functionalities can arise when 2D materials are scaled down near the monolayer limit. Tin selenide (SnSe) is one such 2D material which is centrosymmetric in bulk but becomes non-centrosymmetric when reduced to the monolayer limit, enabling piezoelectricity, and potentially, ferroelectricity. Developing 2D piezoelectric and ferroelectric materials is critical for the scaling of efficient sensors and electronics, such as ferroelectric field effect transistors. However, unlike other 2D materials, the strong interlayer bonding makes exfoliating a monolayer of SnSe challenging. Therefore, direct film growth is necessary to control the layer thickness and promote lateral growth large enough for device testing. This talk will focus on the development of processing routes to control the morphology and layering of SnSe thin films grown by molecular beam epitaxy (MBE) for piezoelectric devices. The bulk Pnma phase of SnSe is stabilized over a broad range of Sn:Se flux ratios from 250 - 300 °C on (100) MgO and (0001) Al₂O₃ substrates. Changing the flux ratio did not affect the SnSe film stoichiometry; increasing the flux ratio only changes the predominant crystallographic orientation. ReaxFF molecular dynamics (MD) show that the limited stoichiometric change is due to the formation of Se clusters that weakly interact with the surface of the SnSe particles. Changing the temperature, flux ratios, and flux timing had a significant impact on the morphology and orientation of the SnSe thin films (shown in Figure 1a and 1b). Machine learning was used to infer the critical processing parameters that are needed for creating an oriented, wafer-scale thin film. Overall, this study identifies the conditions for the growth of monolayer SnSe thin films necessary for the development of 2D piezoelectric devices.

Thursday, April 18, at 4:30 PM

Physics Building Room 202

Local Contact: Prof. Y. Abate, yohannes.abate@uga.edu