Admin Login • Instructor Login • Student Login

Your Support

PHYS 8990 Topic

Structural Properties of Polymers

Michael Bachmann

In several projects, our group investigates the structural behavior of polymers,
with particular emphasis on structural transitions. In its simplest form, a
polymer is a linear chain of identical chemical units, so-called monomers, bound
by covariant bonds. A well-known example of such a system is polyethylene. Since
there are competing repulsive and attractive interactions and the chains can be
quite long, the structural reaction of such a system upon changes of
environmental parameters (temperature, concentration, pressure, etc.) results in
amazing cooperative structural effects (collapse, crystallization, formation of
glassy structures, etc.). Our main goal aims at the understanding of the basic
physical effects causing the collective behavior of the monomers when the
polymer experiences a
structural transition. Since the observed behavior strongly reminds one of phase
transitions, it is particularly exciting to study this relationship within the
framework of statistical mechanics and thermodynamics, even though polymer
systems can be so small that finite-size effects are dominant.

To achieve this goal, only the application of most contemporary Monte Carlo computer
simulation strategies provides the quality of data that is required to identify
transition points in state space for complex polymer models.

The interested student will learn how polymer systems can be modeled and how
these models are simulated by means of computational resources ranging from
standard PCs via highly parallelized graphics processing units (GPUs) and
compute clusters to supercomputers. Since data analysis is crucial for
understanding the physics behind, methods for the identification of transition
signals in stochastic data series will be introduced as well. This also includes
the visualization of three-dimensional polymer structures.

<-- Back to PHYS 8990 Topics page