Single-step controlled-NOT logic from any exchange interaction

Andrei Galiautdinov

Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

(Received 10 July 2007; accepted 17 October 2007; published online 14 November 2007)

A self-contained approach to studying the unitary evolution of coupled qubits is introduced, capable of addressing a variety of physical systems described by exchange Hamiltonians containing Rabi terms. The method automatically determines both the Weyl chamber steering trajectory and the accompanying local rotations. Particular attention is paid to the case of anisotropic exchange with tracking controls, which is solved analytically. It is shown that, if computational subspace is well isolated, any exchange interaction can always generate high fidelity, single-step controlled-NOT (CNOT) logic, provided that both qubits can be individually manipulated. The results are then applied to superconducting qubit architectures, for which several CNOT gate implementations are identified. The paper concludes with consideration of two CNOT gate designs having high efficiency and operating with no significant leakage to higher-lying noncomputational states. © 2007 American Institute of Physics.

1. INTRODUCTION

Controllability of quantum mechanical systems has been the subject of numerous investigations in the last several years.1–11 An important contribution by Khaneja et al. on time-optimal control3,7 has led to the development of rf-pulse sequences for NMR spectroscopy with nearly ideal performance.12 In Refs. 3 and 7 it was assumed that the local terms in the Hamiltonian can be made arbitrarily large, which would allow an almost instantaneous execution of single-qubit operations. However, such hard control mechanism is not applicable to quantum computing architectures based on superconducting Josephson devices, in which the relevant computational subspace must be kept well isolated at all times.

In this regard, the work of Zhang et al. on geometric theory of nonlocal two-qubit operations13,14 acquires special significance. The authors introduced a convenient, geometrically transparent description of SU(4) local equivalence classes and then used it to develop several implementations of quantum logic gates that did not involve hard-pulse control sequences. The description of entangling operations presented in Refs. 13 and 14 is based on the fact3,7 that any two-qubit quantum gate $U \in U(4)$ can always be written as a product, called the Cartan decomposition,

$$U = e^{i\mathbf{c} \cdot \mathbf{k}_1} U_{\text{ent}} k_2, \quad k_1, k_2 \in SU(2) \otimes SU(2),$$

with

$$U_{\text{ent}} = e^{-i/2(\mathbf{c}_1 \cdot \sigma_1^x + \mathbf{c}_2 \cdot \sigma_1^y + \mathbf{c}_3 \cdot \sigma_1^z)}.$$

The triplet of numbers $\mathbf{c} = (c_1, c_2, c_3)$ in Eq. (2) may be taken to represent the local class of U. In general, such representation is not unique due to the presence of symmetries mapping class vectors...
to other class vectors of the same equivalence class. However, it was shown in Ref. 13 that the correspondence can be made unique if \(\tilde{c} \) is restricted to a tetrahedral region of \(\mathbb{R}^3 \), called a Weyl chamber. One such chamber is chosen to be canonical. It is described by the following three conditions:\(^{13,15}\)

(i) \(\pi > c_1 \geq c_2 \geq c_3 \geq 0 \),
(ii) \(c_1 + c_2 = \pi \),
(iii) if \(c_3 = 0 \), then \(c_1 \leq \pi/2 \).

When a physical system evolves under the action of its Hamiltonian, \(\tilde{c} \) traces a trajectory inside the Weyl chamber, which explicitly shows the conditions:

\[\text{chamber.} \]

One such chamber is chosen to be canonical. It is described by the following three conditions:

\[\pi > c_1 \geq c_2 \geq c_3 \geq 0, \]
\[c_1 + c_2 = \pi, \]
\[\text{if } c_3 = 0, \text{ then } c_1 \leq \pi/2. \]

After steering for a time \(t_{\text{CNOT}} = \pi/2 \gamma \) the system hits the gate

\[U(t) = e^{-i\theta t} = U_{\text{can}}(t), \quad k_1, k_2 = 1. \tag{3} \]

After steering for a time \(t_{\text{CNOT}} = \pi/2 \gamma \) the system hits the gate

\[U(t_{\text{CNOT}}) = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 0 & 0 & -i \\
0 & 1 & -i & 0 \\
0 & -i & 1 & 0 \\
-\gamma & 0 & 0 & 1
\end{pmatrix}, \tag{4} \]

with

\[\tilde{c} = \pi/2 \times (1,0,0), \tag{5} \]

belonging to the controlled-\text{NOT} equivalence class. By flanking \(U(t_{\text{CNOT}}) \) with additional local rotations \(K_1 \) and \(K_2 \), any gate in that class can be made. For example, to make the canonical CNOT gate we can take

\[\text{CNOT} = e^{i\pi/4} e^{-i(\pi/4)\sigma_x^1} e^{i(\pi/4)(\sigma_x^1 - \sigma_y^1)} U(t_{\text{CNOT}}) e^{i(\pi/4)\sigma_y^1} K_2. \tag{6} \]

When Rabi terms are present in the Hamiltonian, the steering trajectory is no longer a straight line. In Ref. 13, the trajectory \(\tilde{c}(t) \) was calculated using the relation between the class vectors and the local invariants.\(^{16}\) That method was applied in Ref. 17 to a CNOT gate design for flux qubits with superconducting quantum interference device based controllable coupling.

In the present paper we propose an alternative approach to finding the steering trajectory that does not rely on local invariants. Our goal is to develop a systematic procedure for calculating the entangling part \(U_{\text{can}}(t) \) of the time-dependent gate \(U(t) \) together with the accompanying it local rotations \(k_1(t) \) and \(k_2(t) \), so that the Cartan decomposition (1) could be determined at every step of system’s evolution. It turns out that due to a special property of the relevant to our problem generators of \(\text{su}(4) \)—the closure under commutation and the existence of a central element—the local rotations required to implement (1) can be chosen in a particularly simple form, which mimics the form of the local Rabi parts of system’s Hamiltonian. Due to such simplifying form of \(k_1 \) and \(k_2 \), the full problem of steering can be analytically solved in the experimentally important case of tracking control.

In the mathematical portions of this paper we will use the notation that is convenient for Lie algebraic manipulations,

\[X_k = (i/2)\alpha_k^1, \quad XX = (i/2)\alpha_k^1\alpha_k^2, \quad YY = (i/2)\alpha_k^1\alpha_k^3, \quad ZZ = (i/2)\alpha_k^1\alpha_k^2, \quad YZ = (i/2)\alpha_k^1\alpha_k^2. \]
The functions appearing in the exponents of Eq. as smoothness, initial conditions, etc.

Later on, in sections devoted to applications, we will revert to the usual notation.

Notice that it is possible to generate Lie algebras isomorphic to \(\mathfrak{so}(4) \) by replacing the local operators \((X_1, X_2) \) with either \((Y_1, Y_2) \) or \((Z_1, Z_2) \), without any change in our results. An example of this will be given in Sec. III C 3.

II. GENERAL CONSIDERATIONS

Let us consider a generic time-dependent Hamiltonian,

\[
iH(t) = \Omega_1(t)X_1 + \Omega_2(t)X_2 + g_{\text{ext}}(t)XX + g_{\text{yz}}(t)YY + g_{\text{zz}}(t)ZZ + g_{\text{zy}}(t)YZ + g_{\text{yx}}(t)YX,
\]

whose scalar functions will be called the steering controls, or control parameters. The solution to the Schrödinger equation

\[
\frac{dU(t)}{dt} = -iH(t)U(t), \quad U(0) = 1,
\]

is a time-dependent operator \(U(t) \in \exp(L_0) \subset \SU(4) \), which can always be written in the form\(^18\)

\[
U(t) = \sum_{k=1}^4 e^{i\alpha_k(t)X_k + i\beta_k(t)X_k^2 + i\epsilon_k(t)XX - i\gamma_k(t)YY - i\delta_k(t)ZZ} e^{\frac{j(t)}{2} X_{13} + \frac{j(t)}{2} X_{23}}.
\]

The functions appearing in the exponents of Eq. (11) will be collectively referred to as the steering parameters, while the triplet \((c_1(t), c_2(t), c_3(t))\) will be called the class vector, as usual.\(^15\) In what follows, the class vector will be allowed to evolve on the full Cartan subalgebra \(\mathfrak{a}_C = \Span\{XX, YY, ZZ\} \subset L_0 \subset \mathfrak{su}(4) \) rather than within the Weyl chamber, since projecting it onto the Weyl chamber can always be easily performed.\(^15\) It is important to remember that at any given time \(t \) the choice of the steering parameters is not unique. Therefore, additional requirements (such as smoothness, initial conditions, etc.) must be imposed on the corresponding functions in order to determine the experimentally meaningful trajectory.

Differentiating (11) with respect to the time \(t \) gives

\[
\frac{dU(t)}{dt} = -[\alpha' X_1 + \beta' X_2 + \epsilon' XX + \alpha X_1 e^{-\beta_2 X_2 (c_2 Y Y + c_1 ZZ)} e^{\beta X_2 e^{\alpha X_1}} + e^{-\alpha X_1} e^{-\beta X_2} e^{-c_2 Y Y} e^{-c_2 ZZ} (\epsilon' X_1 \\
+ \epsilon' X_2) e^{c_3 ZZ} e^{\epsilon' X_2} e^{\beta X_2 e^{\alpha X_1}}] U(t),
\]

Here, each of the nested similarity transformations represents a rotation by some angle in a certain two-dimensional subspace of the Lie algebra \(L_0 \). For instance,

\[
e^{-c_2 ZZ} X_1 e^{-c_2 ZZ} = X_1 \cos c_3 + YZ \sin c_3,
\]
\[e^{-c_2^{Y} Y e^{c_2^{Y}} Y} = YZ \cos c_2 + X_2 \sin c_2, \] \tag{13} \\
\[e^{-a_{X_1}^{Y} Z e^{a_{X_1}^{Y}}} = YZ \cos \alpha + ZZ \sin \alpha, \]

eq etc. Using (13) to perform algebraic manipulations in (12) and equating the resulting coefficients of the corresponding generators on the right hand sides of (10) and (12), we get a nonlinear system of seven first-order differential equations,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & C_1 & C_2 \\
0 & 0 & 1 & 0 & 0 & C_2 & C_1 \\
0 & 0 & 0 & A_1 & A_2 & -A_3 C_3 + A_4 C_4 & A_3 C_4 - A_4 C_3 \\
0 & 0 & 0 & A_2 & A_1 & A_4 C_3 - A_3 C_4 & -A_4 C_4 + A_3 C_3 \\
0 & 0 & 0 & A_3 & -A_4 & A_1 C_3 + A_2 C_4 & -A_1 C_4 - A_2 C_3 \\
0 & 0 & 0 & A_4 & -A_3 & -A_2 C_3 - A_1 C_4 & A_2 C_4 + A_1 C_3 \\
\end{bmatrix}
\begin{bmatrix}
c_1' \\
\alpha' \\
\beta' \\
c_1' \\
c_2' \\
z' \\
\xi' \\
\end{bmatrix}
\begin{bmatrix}
g_{xx} \\
\Omega_{1x} \\
\Omega_{2x} \\
g_{yy} \\
\zeta' \\
g_{zz} \\
g_{xy} \\
\end{bmatrix}
\] \tag{14}

where the new variables,

\[C_1 = \cos c_2 \cos c_3, \quad C_2 = \sin c_2 \sin c_3, \quad C_3 = \cos c_2 \sin c_3, \quad C_4 = \sin c_2 \cos c_3, \] \tag{15}

and

\[A_1 = \cos \alpha \cos \beta, \quad A_2 = \sin \alpha \sin \beta, \quad A_3 = \cos \alpha \sin \beta, \quad A_4 = \sin \alpha \cos \beta, \] \tag{16}

have been introduced. Notice that

\[\det M = \cos^2 c_2 - \cos^2 c_3. \] \tag{17}

For simplicity, we choose

\[c_1(0) = \alpha(0) = \beta(0) = c_2(0) = c_3(0) = \zeta(0) = \xi(0) = 0 \] \tag{18}

to satisfy the initial condition \(U(0) = 1. \)

The first equation in (14) integrates immediately,

\[c_1(t) = \int_0^t d \varphi_{xx}(\tau), \] \tag{19}

while the remaining system can be inverted to give

\[
\begin{bmatrix}
\alpha' \\
\beta' \\
c_1' \\
z' \\
\xi' \\
\end{bmatrix}
= \begin{bmatrix}
\Omega_{1x} + g_{xx}(A_1 C_3 + A_2 C_2) - g_{yy}(A_1 C_3 + A_2 C_2) - g_{zy}(A_1 C_3 + A_2 C_2) - g_{zz}(A_1 C_3 + A_2 C_2) \\
g_{yy}(A_1 C_3 + A_2 C_2) - g_{yy}(A_1 C_3 + A_2 C_2) - g_{zy}(A_1 C_3 + A_2 C_2) - g_{zz}(A_1 C_3 + A_2 C_2) \\
g_{yy} A_1 + g_{yy} A_2 + g_{yy} A_3 + g_{yy} A_4 \\
g_{yy} A_1 + g_{yy} A_2 - g_{yy} A_3 \\
-g_{yy}(A_1 C_3 + A_2 C_2) + g_{yy}(A_1 C_3 + A_2 C_2) + g_{yy}(A_1 C_3 - A_2 C_2) + g_{yy}(A_1 C_3 - A_2 C_2) \\
\end{bmatrix}
\] \tag{20}

where
\[C_{22} = \cos c_2 \sin c_2, \quad C_{33} = \cos c_3 \sin c_3. \quad (21) \]

To make further progress, we impose some restrictions on the form of the steering Hamiltonian.

III. ANISOTROPIC EXCHANGE WITH TRACKING CONTROLS

Tracking\(^\text{19}\)* refers to steering with control parameters having the same enveloping profile defined by some function \(\gamma(t) \). Notice that any time-independent Hamiltonian describes tracking with \(\gamma(t) = 1 \). Here we are interested in Hamiltonians,

\[iH(t) = \gamma(t)[\Omega_1 X_1 + \Omega_2 X_2 + g_1(t)XX + g_2 YY + g_3 ZZ], \quad (22) \]

where \(g_1(t) \) is a function of time and \(\Omega_1, \Omega_2, g_2, g_3 \) are some constants. [It is possible to choose \(g_1(t) \) arbitrarily because \(XX \) is central in \(L_0 \).]

A. Solving the tracking control case

Under these conditions,

\[c_1(t) = \int_0^t d\tau \gamma(\tau) g_1(\tau). \quad (23) \]

The remaining steering parameters will be found using the ansatz,

\[\alpha(t) = \xi(t), \quad \beta(t) = \xi(t), \quad (24) \]

or, equivalently,

\[U(t) = e^{-\alpha(t)X_1 - \beta(t)X_2} e^{-\xi(t)XX - c_2(t)YY - c_3(t)ZZ} e^{-a(t)X_1 - \beta(t)X_2}. \quad (25) \]

This ansatz works only for Hamiltonians given in (22). For more general systems, another trick or numerical simulations based on (11) and (20) should be used.

The resulting system is

\[
\begin{bmatrix}
\alpha' \\
\beta' \\
c'_2 \\
c'_3 \\
\alpha' \\
\beta'
\end{bmatrix}
= \gamma
\begin{bmatrix}
\Omega_1 + \frac{(g_2 A_4 - g_3 A_3) C_{22} + (g_2 A_3 - g_3 A_4) C_{33}}{\det M}
\\
\Omega_2 + \frac{(g_2 A_3 - g_3 A_4) C_{22} + (g_2 A_4 - g_3 A_3) C_{33}}{\det M}
\\
g_2 A_1 + g_3 A_2
\\
g_2 A_2 + g_3 A_1
\\
- \frac{(g_2 A_4 - g_3 A_3) C_4 - (g_2 A_3 - g_3 A_4) C_3}{\det M}
\\
- \frac{(g_2 A_3 - g_3 A_4) C_3 - (g_2 A_4 - g_3 A_3) C_4}{\det M}
\end{bmatrix}.
\quad (26)
\]

The four equations for \(\alpha' \) and \(\beta' \) give

\[\alpha' = \frac{\gamma \Omega_1 (1 + \cos c_2 \cos c_3 - \Omega_2 \sin c_2 \sin c_3)}{(\cos c_2 + \cos c_3)^2}, \quad \beta' = \frac{\gamma \Omega_2 (1 + \cos c_2 \cos c_3 - \Omega_1 \sin c_2 \sin c_3)}{(\cos c_2 + \cos c_3)^2}, \quad (27) \]

which determine \(\alpha(t) \) and \(\beta(t) \) after \(c_2(t) \) and \(c_3(t) \) had been found. Also,
\[A_3 = \frac{(\Omega_1 g_3 - \Omega_2 g_2) \sin c_2 - (\Omega_1 g_2 - \Omega_2 g_3) \sin c_3}{(g_2^2 - g_3^2)(\cos c_2 + \cos c_3)}, \]

\[A_4 = \frac{(\Omega_1 g_3 - \Omega_2 g_2) \sin c_2 - (\Omega_1 g_2 - \Omega_2 g_3) \sin c_2}{(g_2^2 - g_3^2)(\cos c_2 + \cos c_3)}. \] (28)

The equations for \(c_2' \) and \(c_3' \) give

\[(c_2' + c_3')^2 = \gamma^2(g_2 \pm g_3)^2(A_1 \pm A_2)^2. \] (29)

Using

\[(A_1 \pm A_2)^2 = 1 - (A_3 \mp A_4)^2, \] (30)

we get

\[(c_2' + c_3')^2 = \gamma^2 \left(g_2 \pm g_3 \right)^2 - \left(\frac{\Omega_1 \mp \Omega_2}{\cos c_2 + \cos c_3} \right)^2 \left(\frac{\Omega_1 \mp \Omega_2}{\cos c_2 + \cos c_3} \right)^2. \] (31)

After applying the sum-to-product identities and rearranging the terms, we arrive at

\[\left(\frac{d}{dt} \sin \left(\frac{c_2(t) \pm c_3(t)}{2} \right) \right)^2 + \left(\frac{\gamma(t)}{2} \sqrt{(g_2 \pm g_3)^2 + (\Omega_1 \mp \Omega_2)^2} \sin \left(\frac{c_2(t) \pm c_3(t)}{2} \right) \right)^2 = \left(\frac{\gamma(t)}{2} (g_2 \pm g_3) \right)^2. \] (32)

By making substitution,

\[f_x(t) := \sin \left(\frac{c_2(t) \pm c_3(t)}{2} \right), \] (33)

we can solve the resulting equation

\[\left(\frac{df_x(t)}{dt} \right)^2 + \left(\frac{\gamma(t)}{2} \sqrt{(g_2 \pm g_3)^2 + (\Omega_1 \mp \Omega_2)^2} f_x(t) \right)^2 = \left(\frac{\gamma(t)}{2} (g_2 \pm g_3) \right)^2 \] (34)

by inspection. It is easy to see that

\[f_x(t) = \frac{g_2 \pm g_3}{\sqrt{(g_2 \pm g_3)^2 + (\Omega_1 \mp \Omega_2)^2}} \sin \left(\frac{\sqrt{(g_2 \pm g_3)^2 + (\Omega_1 \mp \Omega_2)^2}}{2} \int_0^t \gamma(\tau) d\tau \right) \] (35)

solves (34) subject to (18), which together with (23), (25), and (27) solves the tracking control case,

\[c_{2,3}(t) = \arcsin(f_x(t)) \pm \arcsin(f_-(t)). \] (36)

B. Controlling the flow on the Weyl chamber

Let us now assume that \(g_1 \) is tunable, but otherwise independent of time. Then, given an experimentally realizable tracking mechanism \(\gamma(t) \), a point on the Weyl chamber (alternatively, in the full Cartan subalgebra \(A_c \)) whose \(XX \) coordinate is \(c_1 \), can be reached after steering for a time \(t_1 \), satisfying
This reachability condition is necessary, but not sufficient. Since the point is specified by a class vector \(\vec{c}=(c_1, c_2, c_3)\), we have yet to determine whether the remaining coordinates \(c_{2,3}\) can be realized by adjusting the Rabi frequencies \(\Omega_{1,2}\). Here we will restrict our attention only to the points belonging to the XX axis, and thus having \(c_{2,3}=0\). It is easy to see that in this case we must have

\[
\Omega_{1,2}^{(1,0,0)} = \frac{1}{2} \sqrt{\left(\frac{2\pi n g_1}{c_1}\right)^2 - (g_2 - g_3)^2 \pm \sqrt{\left(\frac{2\pi n g_1}{c_1}\right)^2 - (g_2 + g_3)^2}},
\]

provided the integers \(n, m\) are chosen in such a way as to make the Rabi frequencies real.

We can now write down a general condition under which a coupled qubit system directly generates controlled-NOT class corresponding to \(\vec{c} = \pi/2 \times (1, 0, 0)\),

\[
\int_0^{t_{\text{CNOT}}} \gamma(\tau)d\tau = \frac{\pi}{2g_1}, \quad \Omega_{1,2}^{\text{CNOT}} = \frac{1}{2} \sqrt{(4ng_1)^2 - (g_2 - g_3)^2 \pm (4ng_1)^2 - (g_2 + g_3)^2}.
\]

Other approaches to CNOT gate design have been considered in Refs. 20–23.

C. Tracking control of Josephson phase qubits

1. Capacitive coupling with rf bias of \(\Omega_1, \alpha_1^r\) type

In the rotating wave approximation (RWA) the dynamics of two resonant capacitively coupled phase qubits is described by the Hamiltonian

\[
H_1(t) = \frac{\gamma(t)}{2} [\Omega_1 \sigma_1^r + g(\sigma_1^r \sigma_2^r + \sigma_1^r \sigma_2^l)], \quad g > 0.
\]

The Rabi term represents the action of a rf bias current applied to one of the qubits. It turns out that keeping just one such local term suffices to generate controlled-NOT logic. \(^{18}\) The condition \(\Omega_2 = g_3=0\) gives \(f_+(t)=f_-(t)\), which leads to

\[
c_1(t) = g \int_0^t \gamma(\tau)d\tau, \quad c_2(t) = 2 \text{arcsin} \left[\frac{1}{\sqrt{1 + (\Omega_1/g)^2}} \sin \left(\frac{g}{2} \sqrt{1 + (\Omega_1/g)^2} \int_0^t \gamma(\tau)d\tau \right) \right], \quad c_3(t) = 0,
\]

and

\[
\alpha(t) = \Omega_1 \int_0^t d\tau \frac{\gamma}{1 + \cos c_2}, \quad \beta(t) = 0.
\]

The time-dependent gate is therefore

\[
U(t) = e^{-i\Omega_1 t \sigma_1^r} e^{-i\Omega_2 (c_1 \sigma_2^r + c_2 \sigma_2^l)} e^{-i\Omega_3 t \sigma_1^l},
\]

which becomes an element of controlled-NOT class, provided \(^{18}\)

\[
\int_0^{t_{\text{CNOT}}} \gamma(\tau)d\tau = \frac{\pi}{2g}, \quad \Omega_{1,2}^{\text{CNOT}} = g \sqrt{(4n)^2 - 1},
\]

with \(n=1, 2, 3, \ldots\).

We may use Result 1 of Ref. 30 to state the following applicability condition for the RWA:

The solution to the Schrödinger equation with the RWA Hamiltonian (40) approximates the solution with exact \(H\) (reduced to computational subspace; see Ref. 18 for details) in the sense that if \(\Omega_1/\omega \ll 1\) (weak perturbation) and \(\omega=\varepsilon\) (resonant condition), then \(\|\psi_{\text{RWA}}(t) - \psi_{\text{exact}}(t)\|\)
$= O(\Omega_1/\omega)$ whenever $0 \leq \epsilon \leq O(\omega/\Omega_1)$. Here, ω is the bias frequency and ϵ is the computational level splitting. For UCSB architectures31 with qubit coupling $g \sim 10 \text{ GHz}$ and level splitting $\omega \leq 100 \text{ MHz}$, $\Omega_1^{\text{CNOT}}/\omega \sim 10^{-2}$.

For calculations that go beyond the RWA in the context of Josephson phase qubits coupled to nanomechanical resonators, see Ref.32.

2. Inductive coupling with rf bias of $\Omega_1\sigma_1^z + \Omega_2\sigma_2^z$ type

For inductively coupled qubits17,33–39 driven by local rf magnetic fluxes the Hamiltonian in the RWA is:18

$$H_2(t) = (\gamma(t)/2)[\Omega_1\sigma_1^z + \Omega_2\sigma_2^z + g(\sigma_1^z\sigma_2^z + \sigma_1^x\sigma_2^x + k\sigma_1^z\sigma_2^z)], \quad g > 0.$$ \hspace{1cm} (45)

Using (36), the steering trajectory is found to be

$$c_1(t) = g \int_0^t \gamma(\tau)d\tau,$$

$$c_{2,3}(t) = \arcsin \left[\frac{1 + k}{\sqrt{(1 + k)^2 + [(\Omega_1 - \Omega_2)/g]^2}} \sin \left(\frac{g}{2} \sqrt{(1 + k)^2 + [(\Omega_1 - \Omega_2)/g]^2} \int_0^t \gamma(\tau)d\tau \right) \right]$$

$$\pm \arcsin \left[\frac{1 - k}{\sqrt{(1 - k)^2 + [(\Omega_1 + \Omega_2)/g]^2}} \sin \left(\frac{g}{2} \sqrt{(1 - k)^2 + [(\Omega_1 + \Omega_2)/g]^2} \int_0^t \gamma(\tau)d\tau \right) \right],$$ \hspace{1cm} (46)

where

$$U(t) = e^{-(i/2)(\alpha r_1^x + \beta r_2^y)} e^{-(i/2)(c_1^x r_1^x + c_2^x r_2^x + c_3^x r_3^x)} e^{-(i/2)(\alpha r_1^x + \beta r_2^y)},$$ \hspace{1cm} (47)

with α and β calculated from Eq. (27). The CNOT class is generated by setting19

$$\int_0^{\Omega_1^{\text{CNOT}}} \gamma(\tau)d\tau = \frac{\pi}{2g}, \quad \Omega_1^{\text{CNOT}} = \frac{g}{2} \sqrt{(4m)^2 - (1 - k)^2} \pm \sqrt{(4m)^2 - (1 + k)^2},$$ \hspace{1cm} (48)

For example, for $g = 1.00$, $k = 0.10$, and $n = m = 1$, the Rabi frequencies are $\Omega_1 = 3.8716$, $\Omega_2 = 0.0258$. The corresponding Weyl chamber steering trajectory for $\gamma(t) = 1$, with parameters measured in units of $\pi/2$, is shown in Figs. 1–3.

3. Inductive coupling with dc bias of $\Omega_1 (\sigma_1^z - \sigma_2^z)$ type

Because of the $(X_1, X_2) \rightarrow (Y_1, Y_2) \rightarrow (Z_1, Z_2)$ “symmetry” mentioned in Sec. I, it is possible to devise an alternative CNOT implementation based on the Hamiltonian for inductively coupled qubits acted upon by dc fluxes,

$$H_3(t) = (\gamma(t)/2)[\Omega_1(\sigma_1^z - \sigma_2^z) + g(k\sigma_1^z\sigma_2^z + \sigma_1^x\sigma_2^x + \sigma_1^y\sigma_2^y)].$$ \hspace{1cm} (49)

The effect of such bias is to “move” system’s energy levels by equal amounts in opposite directions (the process known as detuning). One important feature of this implementation is that for any $|k| < 1/2$ it is always possible to generate controlled-NOT logic by choosing Rabi frequencies $0 < |\Omega_1|/g < 1$. This is important when perturbation is required to be small (see Sec. V for a more general approach).

We have,
FIG. 1. Steering trajectory generating CNOT class in the case of rf-biased inductively coupled flux qubits, Eq. (45). Here, $g=1.00$, $k=0.10$, $\Omega_1=3.8716$, $\Omega_2=0.0258$, and $\gamma(t)=1$. The steering parameters are given in units of $\pi/2$.

FIG. 2. Local rotation α accompanying the steering trajectory shown in Fig. 1.
c_1(t) = k g \int_0^t \gamma(\tau) d\tau, \quad c_2(t) = c_3(t) = \arcsin \left(\frac{1}{\sqrt{1 + (\Omega_1/g)^2}} \sin \left(g \sqrt{1 + (\Omega_1/g)^2} \int_0^t \gamma(\tau) d\tau \right) \right),
\tag{50}

\text{and}
\alpha(t) = -\beta(t) = \frac{\Omega_1}{2} \int_0^t d\tau \frac{\gamma}{\cos^2 c_2},
\tag{51}

where the steering parameters \((\alpha, \beta, c_1, c_2, c_3)\) are now associated with the operators \((Z_1, Z_2, ZZ, XX, YY)\). The time-dependent gate is given by

\[U(t) = e^{-i/2(\alpha(\sigma^2_1 - \sigma^2_2))} e^{-i/2(c_1(\sigma^1_1 \sigma^2_1 + \sigma^1_2 \sigma^2_2 + \sigma^1_3 \sigma^2_3))} e^{-i/2(\alpha(\sigma^1_1 - \sigma^1_2))} e^{-i/2(\beta(\sigma^2_1 - \sigma^2_2))}, \]
\tag{52}

which implements CNOT class, provided

\[\int_0^{1/CNOT} \gamma(\tau) d\tau = \pi/(2kg), \quad \Omega_1^{CNOT} = g \sqrt{(2kn)^2 - 1}, \]
\tag{53}

where \((2kn)^2 > 1\). Several examples of this implementation are listed in Table I.

Figures 4 and 5 show the steering trajectory for \(g=1.00, k=0.10\), and the Rabi frequency \(\Omega_1=0.6633\).

IV. DISCUSSION

We now discuss limitations and possible extensions of the proposed method.

The most significant limitation comes from restricting the local terms to form a \emph{homogeneous} pair [such as, for example, \((X_1, X_2)\)]. By adopting such restriction we were able to isolate a special subalgebra \(L_0\) of \(\text{su}(4)\), given in Eq. (8), that contains a central element. The 15-dimensional problem was then reduced to a nonlinear system of “only” seven first-order differential equations, one of which completely separated from the others. By making a certain ansatz, the analytical solution in the tracking control case has been found.
TABLE I. Generation of controlled-\texttt{NOT} logic with $\vec{c}=(\pi/2)\times (1,0,0)$ using inductively coupled flux qubits subject to symmetric dc detuning $(\Omega/2)(c_{z}^{\dagger}-c_{z})$. The Hamiltonian is given in (49). Here, $\gamma(t)=1$.

<table>
<thead>
<tr>
<th>k</th>
<th>t_{CNOT}, units of $\pi/2g$</th>
<th>n</th>
<th>$\Omega_{1}^{\text{CNOT}}/g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>10</td>
<td>6</td>
<td>0.6633</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.9798</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.2490</td>
</tr>
<tr>
<td>0.050</td>
<td>20</td>
<td>11</td>
<td>0.4583</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.6633</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0.8307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>0.9798</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.1180</td>
</tr>
<tr>
<td>0.025</td>
<td>40</td>
<td>21</td>
<td>0.3202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>0.4583</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>0.5679</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>0.6633</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.7500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>0.8307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>0.9069</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>0.9798</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>1.0500</td>
</tr>
</tbody>
</table>

FIG. 4. Steering trajectory generating \texttt{CNOT} class in the case of inductively coupled flux qubits subject to dc symmetric detuning, Eq. (49). Here, $g=1.00$, $k=0.10$, $\Omega_{1}=0.6633$, and $\gamma(t)=1$. The steering parameters are given in units of $\pi/2$.
We can extend this approach to Hamiltonians with arbitrary combinations of Rabi terms, such as

\[H_{10} X_1 + Y_2, \]

etc. The dimensionality of the problem would increase, but it would still be possible to write down and solve—most likely, numerically—the corresponding system of differential equations.

For Hamiltonians containing homogeneous local terms with arbitrary time dependence the following useful ansatz can be identified:

Case 1:

For

\[H(t) = (1/2)[\Omega(t) \sigma_1^x + g_1(t) \sigma_1^y \sigma_2^y + g_2(t) \sigma_1^z \sigma_2^z], \]

use

\[c_3(t) = 0, \quad \beta(t) = \xi(t) = 0, \quad (54) \]

which corresponds to the Cartan decomposition

\[U(t) = e^{-i(\Omega/2)\sigma_1^g} e^{-i(\Omega/2)\sigma_1^r \sigma_2^r} e^{-i(\Omega/2)\alpha_1^r}. \]

Equation (20) then reduces to

\[
\begin{bmatrix}
\alpha' \\
\xi' \\
\zeta'
\end{bmatrix} =
\begin{bmatrix}
\Omega_1 - g_2 \sin \alpha \cos \beta/\sin c_2 \\
g_2 \cos \alpha \\
g_2 \sin \alpha/\sin c_2
\end{bmatrix}.
\]

Case 2: Anisotropic exchange with symmetric detuning. This case generalizes the detuning Hamiltonian considered in Sec. III C 3 by allowing arbitrary time-dependent controls,

\[H(t) = (1/2)[\Omega(t)(\sigma_1^x - \sigma_2^x) + g_1(t) \sigma_1^y \sigma_2^y + g_2(t) \sigma_1^z \sigma_2^z + g_3(t) \sigma_1^r \sigma_2^r]. \]

In this case we use

\[\alpha(t) = -\beta(t), \quad \xi(t) = -\xi(t), \quad (59) \]

or
\[U(t) = e^{-i(\frac{1}{2} \alpha \sigma_1^x \sigma_2^z)} e^{-i(\frac{1}{2} \beta \sigma_1^z \sigma_2^x)} e^{-i(\frac{1}{2} \xi \sigma_1^y \sigma_2^y)} e^{-i(\frac{1}{2} \alpha_3 \sigma_1^x \sigma_2^x + \beta_3 \sigma_1^y \sigma_2^y + \xi_3 \sigma_1^z \sigma_2^z)} e^{-i(\frac{1}{2} \alpha_4 \sigma_1^x \sigma_2^x + \beta_4 \sigma_1^y \sigma_2^y + \xi_4 \sigma_1^z \sigma_2^z)}. \]

Equation (20) now becomes
\[
\begin{bmatrix}
\alpha' \\
\beta' \\
c'_2 \\
\xi'
\end{bmatrix} =
\begin{bmatrix}
\Omega_1 - (g_2 + g_3) \cos \alpha \sin \alpha \cos \beta_3 \sin \beta_4 \\
g_2 \cos^2 \alpha - g_3 \sin^2 \alpha \\
g_3 \cos^2 \alpha - g_2 \sin^2 \alpha \\
(g_2 + g_3) \cos \alpha \sin \alpha \cos \beta_4 \sin \beta_3
\end{bmatrix}
\begin{bmatrix}
\Omega_1 \\
\Omega_2 \\
c'_2 \\
\xi'
\end{bmatrix}.
\]

Case 3: For systems described by
\[
H(t) = (1/2)[\Omega_1(t) \sigma_1^x \sigma_2^x + \Omega_2(t) \sigma_1^y \sigma_2^y + g_1(t) \sigma_1^x \sigma_2^x + g_2(t) (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y)],
\]
use
\[
c_2(t) = c_1(t), \quad \xi(t) = 0,
\]
corresponding to
\[
U(t) = e^{-i(\frac{1}{2} \alpha \sigma_1^x \sigma_2^z)} e^{-i(\frac{1}{2} \beta \sigma_1^z \sigma_2^x)} e^{-i(\frac{1}{2} \xi \sigma_1^y \sigma_2^y)} e^{-i(\frac{1}{2} \alpha_3 \sigma_1^x \sigma_2^x + \beta_3 \sigma_1^y \sigma_2^y + \xi_3 \sigma_1^z \sigma_2^z)} e^{-i(\frac{1}{2} \alpha_4 \sigma_1^x \sigma_2^x + \beta_4 \sigma_1^y \sigma_2^y + \xi_4 \sigma_1^z \sigma_2^z)}. \]

Notice that in this case we cannot use Eq. (20) directly because matrix \(M \) is not invertible, as can be seen from Eq. (17). Instead, the original system (14) has to be rewritten in accordance with the constraints imposed by (63). We then get
\[
\begin{bmatrix}
1 & 0 & 0 & C_1 \\
0 & 1 & 0 & C_2 \\
0 & 0 & A_1 + A_2 & -(A_3 - A_4) C_3 \\
0 & 0 & A_3 - A_4 & (A_1 + A_2) C_3
\end{bmatrix}
\begin{bmatrix}
\alpha' \\
\beta' \\
c'_2 \\
\xi'
\end{bmatrix} =
\begin{bmatrix}
\Omega_1 \\
\Omega_2 \\
c'_2 \\
\xi'
\end{bmatrix},
\]

with the variables defined as before, and
\[
\det M_1 = \cos c_2 \sin c_2.
\]
The system can now be inverted to give
\[
\begin{bmatrix}
\alpha' \\
\beta' \\
c'_2 \\
\xi'
\end{bmatrix} =
\begin{bmatrix}
\Omega_1 + g_2 (A_3 - A_4) \cos c_2 \sin c_2 \\
\Omega_2 + g_2 (A_3 - A_4) \sin c_2 \cos c_2 \\
g_2 (A_1 + A_2) \\
-g_2 (A_3 - A_4) / \cos c_2 \sin c_2
\end{bmatrix},
\]

which can be solved numerically.

V. REDUCING LEAKAGE TO NON-COMPUTATIONAL STATES

Here we describe two controlled-NOT gate implementations satisfying certain constraints that must be imposed on Josephson phase qubits in order to make leakage to higher-lying (noncomputational) states small, while maintaining the high efficiency of the gate. The relevant conditions are

Hamiltonian:
\[H(t) = \left(\gamma(t)/2 \right) \left[\Omega_{c1} \sigma_i^x + \Omega_{c2} \sigma_i^y + \Omega_{c3} \sigma_i^z + \Omega_{c4} \sigma_i^x + \Omega_{c5} \sigma_i^z + \Omega_{c6} \sigma_i^y + g(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^x + k \sigma_i^x \sigma_j^x) \right], \]

(68)

coupling constants:

\[g > 0, \quad |k| < 0.5, \]

(69)

number of \(H \) applications:

\[N = 1, \]

(70)

Rabi frequencies:

\[|\Omega_{c1}|, |\Omega_{c2}|, |\Omega_{c3}| \leq g, \quad i = 1, 2, \]

(71)

efficiency:

\[\eta = \frac{2\pi}{g t_{\text{gate}}} \geq 2.5. \]

(72)

All these constraints can be satisfied by directly steering toward the target belonging to the CNOT equivalence class with entangling part \(U_{\text{ent}}(t_{\text{CNOT}}) \) represented by the class vector \(\vec{c} = (\pi/2) \times (1, 0, 0) \). The canonical CNOT gate can then be made out of \(U(t_{\text{CNOT}}) = k_1 U_{\text{ent}}(t_{\text{CNOT}}) k_2 \) by performing additional local rotations \(K_1 \) and \(K_2 \), as usual.

The two implementations are the following.

(1) Symmetric dc detuning. In this case the Hamiltonian is

\[H^{(-)}_{\text{sym, dc}}(t) = \left(\gamma(t)/2 \right) \left[\Omega_{c1} (\sigma_i^x - \sigma_i^y) + \Omega_{c2} (\sigma_i^x - \sigma_i^y) + \underbrace{\Omega_{c3} (\sigma_i^x - \sigma_i^y)}_{\text{symmetric dc detuning}} + g(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^x + k \sigma_i^x \sigma_j^x) \right], \]

(73)

or, alternatively,

\[H^{(+)}_{\text{sym, dc}}(t) = \left(\gamma(t)/2 \right) \left[\Omega_{c1} (\sigma_i^x + \sigma_i^y) + \Omega_{c2} (\sigma_i^x + \sigma_i^y) + \underbrace{\Omega_{c3} (\sigma_i^x - \sigma_i^y)}_{\text{symmetric dc detuning}} + g(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^x + k \sigma_i^x \sigma_j^x) \right], \]

(74)

with

\[\Omega_1 = g, \]

(75)

where \(\gamma(t) \) represents experimentally available tracking control, and the superscript \((\pm)\) refers to the corresponding choice of the \(x \) and \(y \) Rabi parts. The relevant control parameters have been found numerically and are listed in Table II.

Figures 6 and 7 show the steering trajectory for \(g=1.00, k=0.050 \), with Rabi frequencies \(\Omega_2=0.0133, \Omega_3=0.7575 \).

(2) Asymmetric dc detuning. In this case the Hamiltonian is

\[H^{(-)}_{\text{asym, dc}}(t) = \left(\gamma(t)/2 \right) \left[\Omega_{c1} (\sigma_i^x - \sigma_i^y) + \Omega_{c2} (\sigma_i^x - \sigma_i^y) + \underbrace{\Omega_{c3} (\sigma_i^x - \sigma_i^y)}_{\text{asymmetric dc detuning}} + g(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^x + k \sigma_i^x \sigma_j^x) \right], \]

(76)

or, alternatively,

\[H^{(+)}_{\text{asym, dc}}(t) = \left(\gamma(t)/2 \right) \left[\Omega_{c1} (\sigma_i^x + \sigma_i^y) + \Omega_{c2} (\sigma_i^x + \sigma_i^y) + \underbrace{\Omega_{c3} (\sigma_i^x - \sigma_i^y)}_{\text{asymmetric dc detuning}} + g(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^x + k \sigma_i^x \sigma_j^x) \right], \]

(77)

with
TABLE II. Generation of controlled-NOT logic with $\vec{e}=(\pi/2) \times (1, 0, 0)$ using inductively coupled flux qubits driven by weak local perturbations and subject to symmetric dc detuning $(\Omega_1/2) (\sigma^1 - \sigma^2)$. The Hamiltonian is given in Eq. (73) or (74), where $\Omega_1/g=1$. Here, $\gamma(t)=1$.

<table>
<thead>
<tr>
<th>k</th>
<th>t_{CNOT}, units of $\pi/2g$</th>
<th>Ω_1^{CNOT}/g</th>
<th>Ω_3^{CNOT}/g</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.595 776</td>
<td>0.000 000</td>
<td>0.755 502</td>
<td>2.5066</td>
</tr>
<tr>
<td>0.001</td>
<td>1.595 775</td>
<td>0.000 264</td>
<td>0.755 503</td>
<td>2.5066</td>
</tr>
<tr>
<td>0.002</td>
<td>1.595 774</td>
<td>0.000 529</td>
<td>0.755 505</td>
<td>2.5066</td>
</tr>
<tr>
<td>0.003</td>
<td>1.595 772</td>
<td>0.000 793</td>
<td>0.755 509</td>
<td>2.5066</td>
</tr>
<tr>
<td>0.004</td>
<td>1.595 769</td>
<td>0.001 057</td>
<td>0.755 515</td>
<td>2.5066</td>
</tr>
<tr>
<td>0.005</td>
<td>1.595 765</td>
<td>0.001 322</td>
<td>0.755 522</td>
<td>2.5066</td>
</tr>
<tr>
<td>0.010</td>
<td>1.595 731</td>
<td>0.002 644</td>
<td>0.755 582</td>
<td>2.5067</td>
</tr>
<tr>
<td>0.025</td>
<td>1.595 496</td>
<td>0.006 614</td>
<td>0.756 001</td>
<td>2.5071</td>
</tr>
<tr>
<td>0.050</td>
<td>1.594 657</td>
<td>0.013 257</td>
<td>0.757 500</td>
<td>2.5084</td>
</tr>
<tr>
<td>0.075</td>
<td>1.593 263</td>
<td>0.019 961</td>
<td>0.760 001</td>
<td>2.5106</td>
</tr>
<tr>
<td>0.100</td>
<td>1.591 321</td>
<td>0.026 758</td>
<td>0.763 506</td>
<td>2.5136</td>
</tr>
<tr>
<td>0.150</td>
<td>1.585 843</td>
<td>0.040 779</td>
<td>0.773 549</td>
<td>2.5223</td>
</tr>
<tr>
<td>0.250</td>
<td>1.569 080</td>
<td>0.071 908</td>
<td>0.806 036</td>
<td>2.5493</td>
</tr>
<tr>
<td>0.350</td>
<td>1.547 002</td>
<td>0.111 865</td>
<td>0.856 120</td>
<td>2.5856</td>
</tr>
<tr>
<td>0.450</td>
<td>1.530 753</td>
<td>0.178 169</td>
<td>0.927 506</td>
<td>2.6131</td>
</tr>
<tr>
<td>0.490</td>
<td>1.550 430</td>
<td>0.240 369</td>
<td>0.966 790</td>
<td>2.5799</td>
</tr>
<tr>
<td>0.493</td>
<td>1.561 200</td>
<td>0.254 105</td>
<td>0.971 189</td>
<td>2.5621</td>
</tr>
</tbody>
</table>

FIG. 6. Weyl chamber steering trajectory generating CNOT class in the case of inductively coupled flux qubits driven by weak local perturbations and subject to symmetric dc detuning, Eq. (73). Here, $g=1.00$, $k=0.050$, $\Omega_2=0.0133$, Ω_3 = 0.7575 and $\gamma(t)=1$. The steering parameters are given in units of $\pi/2$.
TABLE III. Generation of controlled-not logic with $\hat{c}=(\pi/2) \times (1,0,0)$ using inductively coupled flux qubits driven by weak local perturbations and subject to asymmetric dc detuning $(\Omega_1/2)\sigma_z^1-(\Omega_2/2)\sigma_z^2$. The Hamiltonian is given in Eq. (76) or (77), where $\Omega_1/g=\Omega_2/g=1$. Here, $\gamma(t)=1$.

<table>
<thead>
<tr>
<th>k</th>
<th>t_{CNOT} units of $\pi/2g$</th>
<th>ω_{CNOT}^1/g</th>
<th>ω_{CNOT}^2/g</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.553 771</td>
<td>0.000 000</td>
<td>0.402 539</td>
<td>2.5744</td>
</tr>
<tr>
<td>0.001</td>
<td>1.553 770</td>
<td>0.000 179</td>
<td>0.402 541</td>
<td>2.5744</td>
</tr>
<tr>
<td>0.002</td>
<td>1.553 768</td>
<td>0.000 358</td>
<td>0.402 548</td>
<td>2.5744</td>
</tr>
<tr>
<td>0.003</td>
<td>1.553 766</td>
<td>0.000 537</td>
<td>0.402 558</td>
<td>2.5744</td>
</tr>
<tr>
<td>0.004</td>
<td>1.553 762</td>
<td>0.000 715</td>
<td>0.402 574</td>
<td>2.5744</td>
</tr>
<tr>
<td>0.005</td>
<td>1.553 757</td>
<td>0.000 894</td>
<td>0.402 593</td>
<td>2.5744</td>
</tr>
<tr>
<td>0.010</td>
<td>1.553 716</td>
<td>0.001 789</td>
<td>0.402 757</td>
<td>2.5754</td>
</tr>
<tr>
<td>0.025</td>
<td>1.553 430</td>
<td>0.004 475</td>
<td>0.403 902</td>
<td>2.5749</td>
</tr>
<tr>
<td>0.050</td>
<td>1.552 414</td>
<td>0.008 974</td>
<td>0.407 988</td>
<td>2.5766</td>
</tr>
<tr>
<td>0.075</td>
<td>1.550 736</td>
<td>0.013 523</td>
<td>0.414 781</td>
<td>2.5794</td>
</tr>
<tr>
<td>0.100</td>
<td>1.548 418</td>
<td>0.018 150</td>
<td>0.424 259</td>
<td>2.5833</td>
</tr>
<tr>
<td>0.150</td>
<td>1.541 995</td>
<td>0.027 780</td>
<td>0.451 143</td>
<td>2.5940</td>
</tr>
<tr>
<td>0.250</td>
<td>1.523 410</td>
<td>0.050 016</td>
<td>0.535 559</td>
<td>2.6256</td>
</tr>
<tr>
<td>0.350</td>
<td>1.501 442</td>
<td>0.081 649</td>
<td>0.659 439</td>
<td>2.6641</td>
</tr>
<tr>
<td>0.450</td>
<td>1.488 962</td>
<td>0.141 937</td>
<td>0.826 279</td>
<td>2.6864</td>
</tr>
<tr>
<td>0.500</td>
<td>1.515 587</td>
<td>0.220 268</td>
<td>0.938 373</td>
<td>2.6392</td>
</tr>
<tr>
<td>0.506</td>
<td>1.539 498</td>
<td>0.251 771</td>
<td>0.959 755</td>
<td>2.5982</td>
</tr>
</tbody>
</table>

FIG. 7. Time dependence of Weyl chamber steering parameters shown in Fig. 6.
\[\Omega_1 = \Omega_3 = g. \]

The corresponding steering controls are listed in Table III.

VI. CONCLUSION

In summary, we have proposed a self-contained approach to steering on the Weyl chamber and applied it to the case of anisotropic exchange with tracking controls, which was solved analytically. It was shown that if architecture allows for local manipulation of individual qubits, any exchange interaction can generate CNOT quantum logic. The results were then used to identify several CNOT gate implementations for superconducting Josephson qubits, including the ones that are capable of suppressing leakage to noncomputational states without significant reduction in the gate’s efficiency.

ACKNOWLEDGMENTS

This work was supported by the Disruptive Technology Office under Grant No. W911NF-04-1-0204 and by the National Science Foundation under Grant No. CMS-0404031. The author thanks Michael Geller, John Martinis, Emily Pritchett, and Andrew Sornborger for useful discussions.